Properties

Label 4.3e3_13e2_97e2.8t29.2
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 3^{3} \cdot 13^{2} \cdot 97^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$42933267= 3^{3} \cdot 13^{2} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 5 x^{6} + 44 x^{4} - 171 x^{3} + 263 x^{2} - 13 x + 88 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 5 + 8\cdot 103 + 22\cdot 103^{2} + 41\cdot 103^{3} + 58\cdot 103^{4} + 86\cdot 103^{5} + 89\cdot 103^{6} + 54\cdot 103^{7} + 65\cdot 103^{8} + 19\cdot 103^{9} + 14\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 47 + 102\cdot 103 + 60\cdot 103^{2} + 71\cdot 103^{3} + 65\cdot 103^{4} + 86\cdot 103^{5} + 81\cdot 103^{6} + 52\cdot 103^{7} + 83\cdot 103^{8} + 70\cdot 103^{9} + 53\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 49 + 35\cdot 103 + 78\cdot 103^{2} + 95\cdot 103^{3} + 62\cdot 103^{4} + 6\cdot 103^{5} + 66\cdot 103^{6} + 17\cdot 103^{7} + 57\cdot 103^{8} + 64\cdot 103^{9} + 51\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 57 + 61\cdot 103 + 16\cdot 103^{2} + 9\cdot 103^{3} + 39\cdot 103^{4} + 100\cdot 103^{5} + 41\cdot 103^{6} + 21\cdot 103^{7} + 63\cdot 103^{8} + 27\cdot 103^{9} + 76\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 84 + 97\cdot 103 + 67\cdot 103^{2} + 53\cdot 103^{3} + 48\cdot 103^{4} + 94\cdot 103^{5} + 59\cdot 103^{6} + 63\cdot 103^{7} + 38\cdot 103^{8} + 58\cdot 103^{9} + 91\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 86 + 7\cdot 103 + 76\cdot 103^{2} + 97\cdot 103^{3} + 89\cdot 103^{4} + 70\cdot 103^{5} + 96\cdot 103^{6} + 25\cdot 103^{7} + 76\cdot 103^{8} + 78\cdot 103^{9} + 33\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 89 + 30\cdot 103 + 99\cdot 103^{2} + 102\cdot 103^{3} + 84\cdot 103^{4} + 4\cdot 103^{5} + 40\cdot 103^{6} + 30\cdot 103^{7} + 102\cdot 103^{8} + 63\cdot 103^{9} + 5\cdot 103^{10} +O\left(103^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 99 + 67\cdot 103 + 93\cdot 103^{2} + 42\cdot 103^{3} + 65\cdot 103^{4} + 64\cdot 103^{5} + 38\cdot 103^{6} + 42\cdot 103^{7} + 28\cdot 103^{8} + 28\cdot 103^{9} + 85\cdot 103^{10} +O\left(103^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,5)$
$(1,4)(2,3)(5,7)(6,8)$
$(2,6)(4,5)$
$(1,3)(7,8)$
$(1,7)(3,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $-4$
$2$ $2$ $(2,6)(4,5)$ $0$
$2$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $0$
$4$ $2$ $(1,4)(2,3)(5,7)(6,8)$ $0$
$4$ $2$ $(2,4)(5,6)$ $2$
$4$ $2$ $(1,7)(4,5)$ $0$
$4$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $0$
$4$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $-2$
$4$ $4$ $(1,4,7,5)(2,8,6,3)$ $0$
$4$ $4$ $(1,5,7,4)(2,8,6,3)$ $0$
$4$ $4$ $(1,3,7,8)(2,5,6,4)$ $0$
$8$ $4$ $(1,4,3,2)(5,8,6,7)$ $0$
$8$ $4$ $(1,5,8,6)(2,7,4,3)$ $0$
$8$ $4$ $(1,7)(2,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.