Properties

Label 4.3e3_13e2_97e2.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 3^{3} \cdot 13^{2} \cdot 97^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$42933267= 3^{3} \cdot 13^{2} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 8 x^{6} + x^{5} + 14 x^{4} + 22 x^{3} + 20 x^{2} - 35 x - 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 10 + 61\cdot 103 + 68\cdot 103^{2} + 85\cdot 103^{3} + 80\cdot 103^{4} + 29\cdot 103^{5} + 30\cdot 103^{6} + 23\cdot 103^{7} + 32\cdot 103^{8} + 11\cdot 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 20 + 28\cdot 103 + 98\cdot 103^{2} + 62\cdot 103^{3} + 96\cdot 103^{4} + 52\cdot 103^{5} + 69\cdot 103^{6} + 47\cdot 103^{7} + 103^{8} + 66\cdot 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 25 + 75\cdot 103 + 73\cdot 103^{2} + 75\cdot 103^{3} + 31\cdot 103^{4} + 18\cdot 103^{5} + 35\cdot 103^{6} + 12\cdot 103^{7} + 84\cdot 103^{8} + 26\cdot 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 53 + 47\cdot 103 + 5\cdot 103^{2} + 10\cdot 103^{3} + 68\cdot 103^{4} + 102\cdot 103^{5} + 48\cdot 103^{6} + 53\cdot 103^{7} + 52\cdot 103^{8} + 45\cdot 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 64 + 44\cdot 103 + 75\cdot 103^{2} + 17\cdot 103^{3} + 46\cdot 103^{4} + 60\cdot 103^{5} + 3\cdot 103^{6} + 44\cdot 103^{7} + 46\cdot 103^{8} + 101\cdot 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 77 + 11\cdot 103 + 9\cdot 103^{2} + 45\cdot 103^{3} + 41\cdot 103^{4} + 31\cdot 103^{5} + 98\cdot 103^{6} + 40\cdot 103^{7} + 55\cdot 103^{8} + 87\cdot 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 80 + 62\cdot 103 + 28\cdot 103^{2} + 56\cdot 103^{3} + 87\cdot 103^{4} + 54\cdot 103^{5} + 26\cdot 103^{6} + 25\cdot 103^{7} + 4\cdot 103^{8} + 103^{9} +O\left(103^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 84 + 80\cdot 103 + 52\cdot 103^{2} + 58\cdot 103^{3} + 62\cdot 103^{4} + 61\cdot 103^{5} + 99\cdot 103^{6} + 61\cdot 103^{7} + 32\cdot 103^{8} + 72\cdot 103^{9} +O\left(103^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)$
$(2,3)(4,7)$
$(1,5)(2,4)(3,7)(6,8)$
$(4,7)(5,6)$
$(1,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,3)(4,7)(5,6)$$-4$
$2$$2$$(1,2)(3,8)(4,5)(6,7)$$0$
$2$$2$$(1,8)(2,3)$$0$
$2$$2$$(1,2)(3,8)(4,6)(5,7)$$0$
$4$$2$$(1,2)(3,8)$$-2$
$4$$2$$(2,3)(4,7)$$0$
$4$$2$$(1,5)(2,4)(3,7)(6,8)$$0$
$4$$2$$(1,5)(2,7)(3,4)(6,8)$$0$
$4$$2$$(1,2)(3,8)(4,7)(5,6)$$2$
$4$$4$$(1,6,8,5)(2,4,3,7)$$0$
$4$$4$$(1,6,8,5)(2,7,3,4)$$0$
$4$$4$$(1,2,8,3)(4,5,7,6)$$0$
$8$$4$$(1,4,2,5)(3,6,8,7)$$0$
$8$$4$$(1,2,8,3)(4,7)$$0$
$8$$4$$(1,7,2,5)(3,6,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.