Properties

Label 4.3e3_1051e3.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 1051^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$31345262577= 3^{3} \cdot 1051^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} - 51 x^{3} + 99 x^{2} + 378 x + 204 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 75 a + 73 + \left(12 a + 4\right)\cdot 79 + \left(39 a + 40\right)\cdot 79^{2} + \left(a + 20\right)\cdot 79^{3} + \left(23 a + 58\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 a + 77 + \left(52 a + 12\right)\cdot 79 + \left(26 a + 11\right)\cdot 79^{2} + \left(2 a + 63\right)\cdot 79^{3} + \left(27 a + 23\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 69 + \left(66 a + 21\right)\cdot 79 + \left(39 a + 66\right)\cdot 79^{2} + \left(77 a + 61\right)\cdot 79^{3} + 55 a\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 + 52\cdot 79 + 51\cdot 79^{2} + 75\cdot 79^{3} + 19\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 47 + \left(26 a + 16\right)\cdot 79 + \left(52 a + 64\right)\cdot 79^{2} + \left(76 a + 38\right)\cdot 79^{3} + \left(51 a + 48\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 49\cdot 79 + 3\cdot 79^{2} + 56\cdot 79^{3} + 6\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$6$ $2$ $(2,5)$ $0$
$9$ $2$ $(1,3)(2,5)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $1$
$4$ $3$ $(1,3,4)$ $-2$
$18$ $4$ $(1,2,3,5)(4,6)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $1$
$12$ $6$ $(1,3,4)(2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.