Properties

Label 4.3e3_1051e2.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 1051^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$29824227= 3^{3} \cdot 1051^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} - 51 x^{3} + 99 x^{2} + 378 x + 204 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 75 a + 73 + \left(12 a + 4\right)\cdot 79 + \left(39 a + 40\right)\cdot 79^{2} + \left(a + 20\right)\cdot 79^{3} + \left(23 a + 58\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 a + 77 + \left(52 a + 12\right)\cdot 79 + \left(26 a + 11\right)\cdot 79^{2} + \left(2 a + 63\right)\cdot 79^{3} + \left(27 a + 23\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 69 + \left(66 a + 21\right)\cdot 79 + \left(39 a + 66\right)\cdot 79^{2} + \left(77 a + 61\right)\cdot 79^{3} + 55 a\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 + 52\cdot 79 + 51\cdot 79^{2} + 75\cdot 79^{3} + 19\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 47 + \left(26 a + 16\right)\cdot 79 + \left(52 a + 64\right)\cdot 79^{2} + \left(76 a + 38\right)\cdot 79^{3} + \left(51 a + 48\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 49\cdot 79 + 3\cdot 79^{2} + 56\cdot 79^{3} + 6\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(2,5)$$-2$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)(2,5,6)$$-2$
$4$$3$$(1,3,4)$$1$
$18$$4$$(1,2,3,5)(4,6)$$0$
$12$$6$$(1,5,3,6,4,2)$$0$
$12$$6$$(1,3,4)(2,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.