Properties

Label 4.3e3_1051.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 1051 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$28377= 3^{3} \cdot 1051 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 3 x^{3} + 3 x^{2} - 6 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 56 + \left(5 a + 2\right)\cdot 79 + \left(43 a + 50\right)\cdot 79^{2} + \left(20 a + 11\right)\cdot 79^{3} + \left(58 a + 74\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 a + 8 + \left(73 a + 56\right)\cdot 79 + \left(35 a + 8\right)\cdot 79^{2} + \left(58 a + 68\right)\cdot 79^{3} + \left(20 a + 32\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 73 + \left(21 a + 68\right)\cdot 79 + \left(54 a + 8\right)\cdot 79^{2} + \left(41 a + 12\right)\cdot 79^{3} + \left(57 a + 73\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 71 + 41\cdot 79 + 67\cdot 79^{2} + 19\cdot 79^{3} + 75\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 47 + \left(57 a + 37\right)\cdot 79 + \left(24 a + 41\right)\cdot 79^{2} + \left(37 a + 78\right)\cdot 79^{3} + \left(21 a + 9\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 62 + 29\cdot 79 + 60\cdot 79^{2} + 46\cdot 79^{3} + 50\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $0$
$6$ $2$ $(2,4)$ $2$
$9$ $2$ $(2,4)(5,6)$ $0$
$4$ $3$ $(1,2,4)$ $1$
$4$ $3$ $(1,2,4)(3,5,6)$ $-2$
$18$ $4$ $(1,3)(2,6,4,5)$ $0$
$12$ $6$ $(1,5,2,6,4,3)$ $0$
$12$ $6$ $(2,4)(3,5,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.