Properties

Label 4.3e2_853.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 853 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$7677= 3^{2} \cdot 853 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 29 x^{3} + 29 x^{2} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.853.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 40 + 19\cdot 73 + 66\cdot 73^{2} + 3\cdot 73^{3} + 22\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 5 + \left(40 a + 7\right)\cdot 73 + \left(60 a + 42\right)\cdot 73^{2} + \left(61 a + 8\right)\cdot 73^{3} + \left(70 a + 23\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 73 + 65\cdot 73^{2} + 15\cdot 73^{3} + 52\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 a + 44 + \left(72 a + 67\right)\cdot 73 + \left(71 a + 41\right)\cdot 73^{2} + \left(62 a + 6\right)\cdot 73^{3} + \left(41 a + 52\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 a + 29 + \left(32 a + 46\right)\cdot 73 + \left(12 a + 37\right)\cdot 73^{2} + \left(11 a + 60\right)\cdot 73^{3} + \left(2 a + 27\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 14 + 4\cdot 73 + \left(a + 39\right)\cdot 73^{2} + \left(10 a + 50\right)\cdot 73^{3} + \left(31 a + 41\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$2$
$6$$2$$(4,6)$$0$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(3,4,6)$$-2$
$4$$3$$(1,2,5)(3,4,6)$$1$
$18$$4$$(1,3)(2,4,5,6)$$0$
$12$$6$$(1,3,2,4,5,6)$$-1$
$12$$6$$(1,2,5)(4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.