Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 34 a + 27 + 3 a\cdot 37 + \left(8 a + 35\right)\cdot 37^{2} + \left(20 a + 19\right)\cdot 37^{3} + \left(21 a + 26\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 29 a + 2 + \left(a + 27\right)\cdot 37 + 15 a\cdot 37^{2} + \left(31 a + 29\right)\cdot 37^{3} + \left(28 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 33 + 16\cdot 37 + 12\cdot 37^{2} + 35\cdot 37^{3} + 28\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 29 + 4\cdot 37 + 14\cdot 37^{2} + 16\cdot 37^{3} + 28\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 8 a + 7 + \left(35 a + 5\right)\cdot 37 + \left(21 a + 22\right)\cdot 37^{2} + \left(5 a + 28\right)\cdot 37^{3} + \left(8 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 3 a + 15 + \left(33 a + 19\right)\cdot 37 + \left(28 a + 26\right)\cdot 37^{2} + \left(16 a + 18\right)\cdot 37^{3} + \left(15 a + 18\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,4)$ |
| $(1,2)(3,4)(5,6)$ |
| $(2,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $6$ |
$2$ |
$(1,3)$ |
$0$ |
| $9$ |
$2$ |
$(1,3)(2,4)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,6)(2,4,5)$ |
$1$ |
| $4$ |
$3$ |
$(1,3,6)$ |
$-2$ |
| $18$ |
$4$ |
$(1,4,3,2)(5,6)$ |
$0$ |
| $12$ |
$6$ |
$(1,4,3,5,6,2)$ |
$1$ |
| $12$ |
$6$ |
$(1,3)(2,4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.