Properties

Label 4.3e2_7e2_73.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 7^{2} \cdot 73 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$32193= 3^{2} \cdot 7^{2} \cdot 73 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 21 x^{4} + 40 x^{3} + 140 x^{2} - 136 x - 288 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 17\cdot 19 + 17\cdot 19^{2} + 14\cdot 19^{3} + 14\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 10\cdot 19 + 3\cdot 19^{2} + 19^{3} + 6\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 13 + \left(16 a + 11\right)\cdot 19 + \left(6 a + 17\right)\cdot 19^{2} + \left(5 a + 6\right)\cdot 19^{3} + \left(14 a + 15\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 16 + \left(2 a + 5\right)\cdot 19 + \left(12 a + 8\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(4 a + 5\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + \left(14 a + 14\right)\cdot 19 + \left(7 a + 17\right)\cdot 19^{2} + \left(5 a + 5\right)\cdot 19^{3} + a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 12 + \left(4 a + 16\right)\cdot 19 + \left(11 a + 10\right)\cdot 19^{2} + \left(13 a + 3\right)\cdot 19^{3} + \left(17 a + 15\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,5)(2,3)$ $0$
$4$ $3$ $(2,3,4)$ $-2$
$4$ $3$ $(1,5,6)(2,3,4)$ $1$
$18$ $4$ $(1,2,5,3)(4,6)$ $0$
$12$ $6$ $(1,2,5,3,6,4)$ $-1$
$12$ $6$ $(1,5,6)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.