Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 129\cdot 211 + 73\cdot 211^{2} + 35\cdot 211^{3} + 130\cdot 211^{4} + 167\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 28 + 10\cdot 211 + 117\cdot 211^{2} + 162\cdot 211^{3} + 102\cdot 211^{4} + 149\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 61 + 28\cdot 211 + 106\cdot 211^{2} + 148\cdot 211^{3} + 158\cdot 211^{4} + 10\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 128 + 9\cdot 211 + 162\cdot 211^{2} + 200\cdot 211^{3} + 115\cdot 211^{4} + 36\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 130 + 31\cdot 211 + 159\cdot 211^{2} + 116\cdot 211^{3} + 61\cdot 211^{4} + 36\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 145 + 203\cdot 211 + 3\cdot 211^{2} + 19\cdot 211^{3} + 144\cdot 211^{4} + 95\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 149 + 57\cdot 211 + 170\cdot 211^{2} + 68\cdot 211^{3} + 37\cdot 211^{4} + 54\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 197 + 162\cdot 211 + 51\cdot 211^{2} + 92\cdot 211^{3} + 93\cdot 211^{4} + 82\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,6)$ |
| $(1,8,3,7)(2,4,6,5)$ |
| $(1,6)(2,3)(4,7)(5,8)$ |
| $(1,2,3,6)(7,8)$ |
| $(1,3)(2,6)(4,5)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,6)(4,5)(7,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,6)(2,3)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,8)(3,5)(6,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,8,3,7)(2,4,6,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,2,4)(3,8,6,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,2,7)(3,5,6,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,3,6)(7,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,3,2)(7,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.