Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 541 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 441\cdot 541 + 494\cdot 541^{2} + 25\cdot 541^{3} + 26\cdot 541^{4} + 283\cdot 541^{5} + 508\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 58 + 193\cdot 541 + 471\cdot 541^{2} + 507\cdot 541^{3} + 284\cdot 541^{4} + 104\cdot 541^{5} + 482\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 147 + 335\cdot 541 + 62\cdot 541^{2} + 115\cdot 541^{3} + 344\cdot 541^{4} + 413\cdot 541^{5} + 209\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 210 + 307\cdot 541 + 41\cdot 541^{2} + 541^{3} + 348\cdot 541^{4} + 266\cdot 541^{5} + 435\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 219 + 6\cdot 541 + 237\cdot 541^{2} + 236\cdot 541^{3} + 349\cdot 541^{4} + 8\cdot 541^{5} + 383\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 234 + 328\cdot 541 + 349\cdot 541^{2} + 166\cdot 541^{3} + 520\cdot 541^{4} + 56\cdot 541^{5} + 20\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 257 + 37\cdot 541 + 344\cdot 541^{2} + 277\cdot 541^{3} + 182\cdot 541^{4} + 130\cdot 541^{5} + 8\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 493 + 514\cdot 541 + 162\cdot 541^{2} + 292\cdot 541^{3} + 108\cdot 541^{4} + 359\cdot 541^{5} + 116\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,3)(4,7)$ |
| $(4,7)(6,8)$ |
| $(1,5)(6,8)$ |
| $(1,4,6,2,5,7,8,3)$ |
| $(1,8)(2,4)(3,7)(5,6)$ |
| $(1,4)(2,6)(3,8)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,5)(2,3)(4,7)(6,8)$ | $-4$ |
| $2$ | $2$ | $(2,3)(4,7)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,4)(3,7)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,4)(2,6)(3,8)(5,7)$ | $0$ |
| $4$ | $2$ | $(4,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,4)(2,8)(3,6)(5,7)$ | $0$ |
| $8$ | $2$ | $(2,4)(3,7)(6,8)$ | $0$ |
| $2$ | $4$ | $(1,6,5,8)(2,7,3,4)$ | $0$ |
| $2$ | $4$ | $(1,8,5,6)(2,7,3,4)$ | $0$ |
| $4$ | $4$ | $(1,4,5,7)(2,8,3,6)$ | $0$ |
| $4$ | $4$ | $(1,4,5,7)(2,6,3,8)$ | $0$ |
| $4$ | $4$ | $(1,8,5,6)$ | $-2$ |
| $4$ | $4$ | $(1,8,5,6)(2,3)(4,7)$ | $2$ |
| $8$ | $8$ | $(1,4,6,2,5,7,8,3)$ | $0$ |
| $8$ | $8$ | $(1,4,8,2,5,7,6,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.