Properties

Label 4.3e2_7e2_19e2.8t26.1c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 3^{2} \cdot 7^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$159201= 3^{2} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 3 x^{6} - 3 x^{5} - x^{4} + 6 x^{3} + 6 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 541 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 8 + 441\cdot 541 + 494\cdot 541^{2} + 25\cdot 541^{3} + 26\cdot 541^{4} + 283\cdot 541^{5} + 508\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 58 + 193\cdot 541 + 471\cdot 541^{2} + 507\cdot 541^{3} + 284\cdot 541^{4} + 104\cdot 541^{5} + 482\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 147 + 335\cdot 541 + 62\cdot 541^{2} + 115\cdot 541^{3} + 344\cdot 541^{4} + 413\cdot 541^{5} + 209\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 210 + 307\cdot 541 + 41\cdot 541^{2} + 541^{3} + 348\cdot 541^{4} + 266\cdot 541^{5} + 435\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 219 + 6\cdot 541 + 237\cdot 541^{2} + 236\cdot 541^{3} + 349\cdot 541^{4} + 8\cdot 541^{5} + 383\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 234 + 328\cdot 541 + 349\cdot 541^{2} + 166\cdot 541^{3} + 520\cdot 541^{4} + 56\cdot 541^{5} + 20\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 257 + 37\cdot 541 + 344\cdot 541^{2} + 277\cdot 541^{3} + 182\cdot 541^{4} + 130\cdot 541^{5} + 8\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 493 + 514\cdot 541 + 162\cdot 541^{2} + 292\cdot 541^{3} + 108\cdot 541^{4} + 359\cdot 541^{5} + 116\cdot 541^{6} +O\left(541^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3)(4,7)$
$(4,7)(6,8)$
$(1,5)(6,8)$
$(1,4,6,2,5,7,8,3)$
$(1,8)(2,4)(3,7)(5,6)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-4$
$2$$2$$(2,3)(4,7)$$0$
$4$$2$$(1,8)(2,4)(3,7)(5,6)$$0$
$4$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$4$$2$$(4,7)(6,8)$$0$
$4$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$8$$2$$(2,4)(3,7)(6,8)$$0$
$2$$4$$(1,6,5,8)(2,7,3,4)$$0$
$2$$4$$(1,8,5,6)(2,7,3,4)$$0$
$4$$4$$(1,4,5,7)(2,8,3,6)$$0$
$4$$4$$(1,4,5,7)(2,6,3,8)$$0$
$4$$4$$(1,8,5,6)$$2$
$4$$4$$(1,8,5,6)(2,3)(4,7)$$-2$
$8$$8$$(1,4,6,2,5,7,8,3)$$0$
$8$$8$$(1,4,8,2,5,7,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.