Properties

Label 4.3e2_7e2_17e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 3^{2} \cdot 7^{2} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$127449= 3^{2} \cdot 7^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - 2 x^{3} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 4 + \left(15 a + 5\right)\cdot 41 + \left(29 a + 38\right)\cdot 41^{2} + \left(7 a + 11\right)\cdot 41^{3} + \left(15 a + 5\right)\cdot 41^{4} + \left(36 a + 2\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 39 + 16\cdot 41 + 15\cdot 41^{2} + 37\cdot 41^{3} + 35\cdot 41^{4} + 13\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 + 14\cdot 41 + 11\cdot 41^{2} + 35\cdot 41^{3} + 23\cdot 41^{4} + 26\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 6 + \left(25 a + 24\right)\cdot 41 + \left(11 a + 28\right)\cdot 41^{2} + \left(33 a + 5\right)\cdot 41^{3} + \left(25 a + 2\right)\cdot 41^{4} + \left(4 a + 14\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 5 + \left(6 a + 36\right)\cdot 41 + \left(40 a + 39\right)\cdot 41^{2} + \left(36 a + 21\right)\cdot 41^{3} + \left(9 a + 31\right)\cdot 41^{4} + \left(7 a + 6\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 13 + \left(34 a + 26\right)\cdot 41 + 30\cdot 41^{2} + \left(4 a + 10\right)\cdot 41^{3} + \left(31 a + 24\right)\cdot 41^{4} + \left(33 a + 18\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,5,3,6,4,2)$
$(1,4)(2,5)$
$(2,6)(3,4)$
$(1,3)(2,5)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$9$ $2$ $(1,3)(2,5)$ $0$
$2$ $3$ $(1,3,4)(2,5,6)$ $-2$
$2$ $3$ $(1,4,3)(2,5,6)$ $-2$
$4$ $3$ $(1,3,4)$ $1$
$6$ $6$ $(1,5,3,6,4,2)$ $0$
$6$ $6$ $(1,6,4,2,3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.