Properties

Label 4.3e2_7e2_13e2.8t26.3c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 3^{2} \cdot 7^{2} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$74529= 3^{2} \cdot 7^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 2 x^{5} + 5 x^{4} - 3 x^{3} + x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 5 + \left(40 a + 56\right)\cdot 101 + \left(95 a + 32\right)\cdot 101^{2} + \left(31 a + 15\right)\cdot 101^{3} + \left(81 a + 73\right)\cdot 101^{4} + \left(54 a + 1\right)\cdot 101^{5} + \left(38 a + 58\right)\cdot 101^{6} + \left(59 a + 17\right)\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 16 + 2\cdot 101 + 79\cdot 101^{2} + 28\cdot 101^{3} + 43\cdot 101^{4} + 87\cdot 101^{5} + 24\cdot 101^{6} + 27\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 82 a + 87 + \left(7 a + 13\right)\cdot 101 + \left(64 a + 26\right)\cdot 101^{2} + \left(74 a + 53\right)\cdot 101^{3} + \left(91 a + 88\right)\cdot 101^{4} + \left(44 a + 36\right)\cdot 101^{5} + \left(26 a + 13\right)\cdot 101^{6} + \left(76 a + 97\right)\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 11 + \left(93 a + 64\right)\cdot 101 + \left(36 a + 72\right)\cdot 101^{2} + \left(26 a + 85\right)\cdot 101^{3} + \left(9 a + 77\right)\cdot 101^{4} + \left(56 a + 23\right)\cdot 101^{5} + \left(74 a + 74\right)\cdot 101^{6} + \left(24 a + 72\right)\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 52 a + 100 + \left(60 a + 67\right)\cdot 101 + \left(5 a + 70\right)\cdot 101^{2} + \left(69 a + 47\right)\cdot 101^{3} + \left(19 a + 63\right)\cdot 101^{4} + \left(46 a + 38\right)\cdot 101^{5} + \left(62 a + 56\right)\cdot 101^{6} + \left(41 a + 14\right)\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 41 + \left(72 a + 11\right)\cdot 101 + \left(47 a + 19\right)\cdot 101^{2} + \left(77 a + 34\right)\cdot 101^{3} + \left(96 a + 19\right)\cdot 101^{4} + \left(78 a + 39\right)\cdot 101^{5} + \left(86 a + 32\right)\cdot 101^{6} + \left(60 a + 57\right)\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 65 + 100\cdot 101 + 66\cdot 101^{2} + 44\cdot 101^{3} + 12\cdot 101^{4} + 19\cdot 101^{5} + 46\cdot 101^{6} + 4\cdot 101^{7} +O\left(101^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 91 a + 81 + \left(28 a + 87\right)\cdot 101 + \left(53 a + 36\right)\cdot 101^{2} + \left(23 a + 94\right)\cdot 101^{3} + \left(4 a + 25\right)\cdot 101^{4} + \left(22 a + 56\right)\cdot 101^{5} + \left(14 a + 98\right)\cdot 101^{6} + \left(40 a + 11\right)\cdot 101^{7} +O\left(101^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(3,5)$
$(1,6,3,7,4,8,5,2)$
$(1,5)(2,6)(3,4)(7,8)$
$(2,7)(6,8)$
$(2,7)(3,5)$
$(1,7)(2,4)(3,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,7)(3,5)(6,8)$$-4$
$2$$2$$(2,7)(6,8)$$0$
$4$$2$$(1,5)(2,6)(3,4)(7,8)$$0$
$4$$2$$(1,7)(2,4)(3,8)(5,6)$$0$
$4$$2$$(1,8)(2,5)(3,7)(4,6)$$0$
$4$$2$$(2,7)(3,5)$$0$
$8$$2$$(2,6)(3,5)(7,8)$$0$
$2$$4$$(1,3,4,5)(2,6,7,8)$$0$
$2$$4$$(1,5,4,3)(2,6,7,8)$$0$
$4$$4$$(1,2,4,7)(3,6,5,8)$$0$
$4$$4$$(1,5,4,3)$$2$
$4$$4$$(1,5,4,3)(2,7)(6,8)$$-2$
$4$$4$$(1,6,4,8)(2,5,7,3)$$0$
$8$$8$$(1,6,3,7,4,8,5,2)$$0$
$8$$8$$(1,2,5,6,4,7,3,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.