Properties

Label 4.3e2_7_61_139.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 7 \cdot 61 \cdot 139 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$534177= 3^{2} \cdot 7 \cdot 61 \cdot 139 $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - x^{3} + 16 x^{2} + 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 12 + 25 a\cdot 31 + \left(15 a + 3\right)\cdot 31^{2} + \left(3 a + 5\right)\cdot 31^{3} + \left(29 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 13 + \left(5 a + 4\right)\cdot 31 + \left(15 a + 9\right)\cdot 31^{2} + \left(27 a + 27\right)\cdot 31^{3} + \left(a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 23 + \left(19 a + 29\right)\cdot 31 + \left(23 a + 5\right)\cdot 31^{2} + \left(28 a + 1\right)\cdot 31^{3} + \left(4 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 21 + \left(11 a + 8\right)\cdot 31 + \left(7 a + 2\right)\cdot 31^{2} + \left(2 a + 4\right)\cdot 31^{3} + \left(26 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 26\cdot 31 + 18\cdot 31^{2} + 29\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 + 23\cdot 31 + 22\cdot 31^{2} + 25\cdot 31^{3} + 28\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $0$
$6$ $2$ $(2,5)$ $2$
$9$ $2$ $(2,5)(4,6)$ $0$
$4$ $3$ $(1,2,5)(3,4,6)$ $-2$
$4$ $3$ $(3,4,6)$ $1$
$18$ $4$ $(1,3)(2,6,5,4)$ $0$
$12$ $6$ $(1,3,2,4,5,6)$ $0$
$12$ $6$ $(2,5)(3,4,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.