Properties

Label 4.3e2_7_547.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 7 \cdot 547 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$34461= 3^{2} \cdot 7 \cdot 547 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} - 53 x^{3} + 101 x^{2} + 390 x + 99 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 23 + \left(7 a + 9\right)\cdot 31 + \left(30 a + 14\right)\cdot 31^{2} + \left(20 a + 16\right)\cdot 31^{3} + \left(19 a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 10 + \left(14 a + 19\right)\cdot 31 + \left(23 a + 11\right)\cdot 31^{2} + \left(18 a + 14\right)\cdot 31^{3} + \left(27 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 18 + \left(23 a + 11\right)\cdot 31 + 5\cdot 31^{2} + \left(10 a + 28\right)\cdot 31^{3} + \left(11 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 9\cdot 31 + 11\cdot 31^{2} + 17\cdot 31^{3} + 3\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 23\cdot 31 + 6\cdot 31^{2} + 19\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 8 + \left(16 a + 19\right)\cdot 31 + \left(7 a + 12\right)\cdot 31^{2} + \left(12 a + 28\right)\cdot 31^{3} + \left(3 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,5)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $1$
$4$ $3$ $(1,3,4)$ $-2$
$18$ $4$ $(1,5,3,2)(4,6)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $-1$
$12$ $6$ $(1,3)(2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.