Properties

Label 4.3e2_7_127.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 7 \cdot 127 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$8001= 3^{2} \cdot 7 \cdot 127 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 7 x^{4} - 13 x^{3} + 37 x^{2} + 84 x - 112 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.7_127.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 27 + 3 a\cdot 37 + \left(8 a + 35\right)\cdot 37^{2} + \left(20 a + 19\right)\cdot 37^{3} + \left(21 a + 26\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a + 2 + \left(a + 27\right)\cdot 37 + 15 a\cdot 37^{2} + \left(31 a + 29\right)\cdot 37^{3} + \left(28 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 16\cdot 37 + 12\cdot 37^{2} + 35\cdot 37^{3} + 28\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 4\cdot 37 + 14\cdot 37^{2} + 16\cdot 37^{3} + 28\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 7 + \left(35 a + 5\right)\cdot 37 + \left(21 a + 22\right)\cdot 37^{2} + \left(5 a + 28\right)\cdot 37^{3} + \left(8 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 15 + \left(33 a + 19\right)\cdot 37 + \left(28 a + 26\right)\cdot 37^{2} + \left(16 a + 18\right)\cdot 37^{3} + \left(15 a + 18\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(1,3)$$0$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,6)(2,4,5)$$1$
$4$$3$$(1,3,6)$$-2$
$18$$4$$(1,4,3,2)(5,6)$$0$
$12$$6$$(1,4,3,5,6,2)$$-1$
$12$$6$$(1,3)(2,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.