Properties

Label 4.3e2_5e4_11e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 3^{2} \cdot 5^{4} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$680625= 3^{2} \cdot 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{4} + 9 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 22\cdot 29 + 17\cdot 29^{2} + 4\cdot 29^{3} + 15\cdot 29^{4} + 10\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 11 + \left(9 a + 6\right)\cdot 29 + \left(16 a + 25\right)\cdot 29^{2} + \left(5 a + 6\right)\cdot 29^{3} + \left(4 a + 6\right)\cdot 29^{4} + \left(20 a + 18\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 14\cdot 29 + 10\cdot 29^{2} + 5\cdot 29^{3} + 2\cdot 29^{4} + 12\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 9 + \left(19 a + 8\right)\cdot 29 + \left(12 a + 10\right)\cdot 29^{2} + \left(23 a + 18\right)\cdot 29^{3} + \left(24 a + 21\right)\cdot 29^{4} + \left(8 a + 27\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 1 + \left(25 a + 10\right)\cdot 29 + \left(10 a + 26\right)\cdot 29^{2} + \left(5 a + 17\right)\cdot 29^{3} + \left(6 a + 22\right)\cdot 29^{4} + \left(2 a + 6\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 20 + \left(3 a + 25\right)\cdot 29 + \left(18 a + 25\right)\cdot 29^{2} + \left(23 a + 4\right)\cdot 29^{3} + \left(22 a + 19\right)\cdot 29^{4} + \left(26 a + 11\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(3,6,5)$
$(1,2)(5,6)$
$(1,6)(2,3)(4,5)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$9$$2$$(1,4)(3,6)$$0$
$2$$3$$(1,4,2)(3,5,6)$$-2$
$2$$3$$(1,4,2)(3,6,5)$$-2$
$4$$3$$(1,2,4)$$1$
$6$$6$$(1,5,4,6,2,3)$$0$
$6$$6$$(1,5,2,6,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.