Properties

Label 4.3e2_5e3_89e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 5^{3} \cdot 89^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$8911125= 3^{2} \cdot 5^{3} \cdot 89^{2} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 11 x^{3} + 9 x^{2} - 33 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 59 a + 55 + \left(13 a + 60\right)\cdot 71 + \left(44 a + 69\right)\cdot 71^{2} + \left(12 a + 5\right)\cdot 71^{3} + \left(69 a + 26\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 + 51\cdot 71 + 69\cdot 71^{2} + 6\cdot 71^{3} + 35\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 64\cdot 71 + 26\cdot 71^{2} + 13\cdot 71^{3} + 22\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 31 + \left(57 a + 29\right)\cdot 71 + \left(26 a + 2\right)\cdot 71^{2} + \left(58 a + 58\right)\cdot 71^{3} + \left(a + 9\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 61 a + 35 + \left(48 a + 20\right)\cdot 71 + \left(56 a + 25\right)\cdot 71^{2} + \left(48 a + 8\right)\cdot 71^{3} + \left(26 a + 22\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 15 + \left(22 a + 57\right)\cdot 71 + \left(14 a + 18\right)\cdot 71^{2} + \left(22 a + 49\right)\cdot 71^{3} + \left(44 a + 26\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $0$
$6$ $2$ $(2,4)$ $-2$
$9$ $2$ $(2,4)(5,6)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $-2$
$4$ $3$ $(3,5,6)$ $1$
$18$ $4$ $(1,3)(2,6,4,5)$ $0$
$12$ $6$ $(1,3,2,5,4,6)$ $0$
$12$ $6$ $(2,4)(3,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.