Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 11 + \left(a + 14\right)\cdot 29 + \left(13 a + 23\right)\cdot 29^{2} + \left(25 a + 10\right)\cdot 29^{3} + \left(13 a + 20\right)\cdot 29^{4} + \left(23 a + 28\right)\cdot 29^{5} + \left(25 a + 16\right)\cdot 29^{6} + \left(8 a + 21\right)\cdot 29^{7} + \left(6 a + 18\right)\cdot 29^{8} + \left(12 a + 21\right)\cdot 29^{9} + \left(5 a + 8\right)\cdot 29^{10} + \left(13 a + 23\right)\cdot 29^{11} + \left(11 a + 14\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 a + 24 + \left(11 a + 22\right)\cdot 29 + \left(19 a + 10\right)\cdot 29^{2} + \left(6 a + 18\right)\cdot 29^{3} + \left(16 a + 17\right)\cdot 29^{4} + \left(25 a + 5\right)\cdot 29^{5} + \left(17 a + 1\right)\cdot 29^{6} + \left(18 a + 20\right)\cdot 29^{7} + \left(21 a + 22\right)\cdot 29^{8} + \left(a + 6\right)\cdot 29^{9} + \left(12 a + 19\right)\cdot 29^{10} + \left(9 a + 10\right)\cdot 29^{11} + \left(7 a + 19\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 a + 3 + \left(17 a + 4\right)\cdot 29 + \left(9 a + 9\right)\cdot 29^{2} + \left(22 a + 3\right)\cdot 29^{3} + \left(12 a + 5\right)\cdot 29^{4} + \left(3 a + 1\right)\cdot 29^{5} + \left(11 a + 7\right)\cdot 29^{6} + \left(10 a + 8\right)\cdot 29^{7} + \left(7 a + 25\right)\cdot 29^{8} + \left(27 a + 22\right)\cdot 29^{9} + \left(16 a + 19\right)\cdot 29^{10} + \left(19 a + 16\right)\cdot 29^{11} + \left(21 a + 17\right)\cdot 29^{12} +O\left(29^{ 13 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 + 9\cdot 29 + 4\cdot 29^{2} + 8\cdot 29^{3} + 20\cdot 29^{4} + 20\cdot 29^{5} + 21\cdot 29^{6} + 3\cdot 29^{8} + 19\cdot 29^{9} + 14\cdot 29^{10} + 7\cdot 29^{11} + 27\cdot 29^{12} +O\left(29^{ 13 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 22 + 24\cdot 29 + 9\cdot 29^{2} + 8\cdot 29^{3} + 17\cdot 29^{4} + 14\cdot 29^{5} + 4\cdot 29^{6} + 25\cdot 29^{7} + 4\cdot 29^{8} + 27\cdot 29^{9} + 3\cdot 29^{11} + 7\cdot 29^{12} +O\left(29^{ 13 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 19 a + 3 + \left(27 a + 11\right)\cdot 29 + 15 a\cdot 29^{2} + \left(3 a + 9\right)\cdot 29^{3} + \left(15 a + 6\right)\cdot 29^{4} + \left(5 a + 16\right)\cdot 29^{5} + \left(3 a + 6\right)\cdot 29^{6} + \left(20 a + 11\right)\cdot 29^{7} + \left(22 a + 12\right)\cdot 29^{8} + \left(16 a + 18\right)\cdot 29^{9} + \left(23 a + 23\right)\cdot 29^{10} + \left(15 a + 25\right)\cdot 29^{11} + 17 a\cdot 29^{12} +O\left(29^{ 13 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3,4)$ |
| $(1,5,6)$ |
| $(1,2,5,3)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $9$ | $2$ | $(1,5)(2,3)$ | $0$ |
| $4$ | $3$ | $(2,3,4)$ | $-2$ |
| $4$ | $3$ | $(1,5,6)(2,3,4)$ | $1$ |
| $9$ | $4$ | $(1,2,5,3)(4,6)$ | $0$ |
| $9$ | $4$ | $(1,3,5,2)(4,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.