Properties

Label 4.3e2_5e3_23e2.5t3.1
Dimension 4
Group $F_5$
Conductor $ 3^{2} \cdot 5^{3} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$595125= 3^{2} \cdot 5^{3} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 3 x^{3} + 8 x^{2} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 24 + 16\cdot 41 + \left(20 a + 10\right)\cdot 41^{2} + \left(34 a + 7\right)\cdot 41^{3} + \left(30 a + 21\right)\cdot 41^{4} + \left(5 a + 3\right)\cdot 41^{5} + \left(22 a + 25\right)\cdot 41^{6} + \left(15 a + 25\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 17 a + \left(16 a + 32\right)\cdot 41 + \left(16 a + 20\right)\cdot 41^{2} + 38 a\cdot 41^{3} + \left(23 a + 17\right)\cdot 41^{4} + \left(7 a + 29\right)\cdot 41^{5} + \left(40 a + 36\right)\cdot 41^{6} + \left(16 a + 38\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 10 + \left(24 a + 23\right)\cdot 41 + \left(24 a + 12\right)\cdot 41^{2} + \left(2 a + 17\right)\cdot 41^{3} + \left(17 a + 9\right)\cdot 41^{4} + \left(33 a + 28\right)\cdot 41^{5} + 26\cdot 41^{6} + \left(24 a + 8\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 1 + \left(40 a + 11\right)\cdot 41 + \left(20 a + 29\right)\cdot 41^{2} + \left(6 a + 8\right)\cdot 41^{3} + \left(10 a + 38\right)\cdot 41^{4} + \left(35 a + 30\right)\cdot 41^{5} + \left(18 a + 3\right)\cdot 41^{6} + \left(25 a + 9\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 8 + 40\cdot 41 + 8\cdot 41^{2} + 7\cdot 41^{3} + 37\cdot 41^{4} + 30\cdot 41^{5} + 30\cdot 41^{6} + 40\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5,4,3,2)$
$(2,5)(3,4)$
$(2,4,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$5$ $2$ $(1,4)(2,3)$ $0$
$5$ $4$ $(1,3,4,2)$ $0$
$5$ $4$ $(1,2,4,3)$ $0$
$4$ $5$ $(1,5,4,3,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.