Properties

Label 4.3e2_5e3_191e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 5^{3} \cdot 191^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$41041125= 3^{2} \cdot 5^{3} \cdot 191^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 4 x^{3} - 3 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 23 + 66\cdot 79 + 25\cdot 79^{2} + 79^{3} + 53\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 46 + \left(52 a + 34\right)\cdot 79 + \left(69 a + 4\right)\cdot 79^{2} + \left(16 a + 59\right)\cdot 79^{3} + \left(15 a + 38\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 22\cdot 79 + 76\cdot 79^{2} + 59\cdot 79^{3} + 73\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 29 + \left(48 a + 18\right)\cdot 79 + \left(64 a + 46\right)\cdot 79^{2} + \left(4 a + 45\right)\cdot 79^{3} + \left(28 a + 5\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 a + 76 + \left(26 a + 56\right)\cdot 79 + \left(9 a + 21\right)\cdot 79^{2} + \left(62 a + 6\right)\cdot 79^{3} + \left(63 a + 37\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 57 + \left(30 a + 38\right)\cdot 79 + \left(14 a + 62\right)\cdot 79^{2} + \left(74 a + 64\right)\cdot 79^{3} + \left(50 a + 28\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$4$ $3$ $(1,4,6)$ $-2$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.