Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 + 103\cdot 331 + 162\cdot 331^{2} + 278\cdot 331^{3} + 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 39 + 239\cdot 331 + 242\cdot 331^{2} + 236\cdot 331^{3} + 83\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 107 + 114\cdot 331 + 263\cdot 331^{2} + 136\cdot 331^{3} + 163\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 136 + 208\cdot 331 + 146\cdot 331^{2} + 189\cdot 331^{3} + 315\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 223 + 93\cdot 331 + 151\cdot 331^{2} + 329\cdot 331^{3} + 240\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 234 + 57\cdot 331 + 263\cdot 331^{2} + 268\cdot 331^{3} + 131\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 267 + 112\cdot 331 + 203\cdot 331^{2} + 271\cdot 331^{3} + 243\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 298 + 63\cdot 331 + 222\cdot 331^{2} + 274\cdot 331^{3} + 142\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,6)$ |
| $(1,6,3,2)(4,8,5,7)$ |
| $(1,2,3,6)(4,8,5,7)$ |
| $(1,8,3,7)(2,4,6,5)$ |
| $(1,3)(7,8)$ |
| $(1,7,3,8)(2,4,6,5)$ |
| $(1,3)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,6)(4,5)(7,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,8)(3,4)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(2,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,3)(4,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,5)(3,7)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,5)(3,8)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,7)(3,4)(6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,3,2)(4,8,5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,3,6)(4,8,5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,3,7)(2,4,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,3,8)(2,4,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,3,4)(2,7,6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,3,4)(2,8,6,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.