Properties

Label 4.3e2_5e2_11e4.8t26.4
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$3294225= 3^{2} \cdot 5^{2} \cdot 11^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 5 x^{6} + 9 x^{5} + x^{4} - 8 x^{3} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 51 + 190\cdot 379 + 162\cdot 379^{2} + 109\cdot 379^{3} + 73\cdot 379^{4} + 298\cdot 379^{5} + 225\cdot 379^{6} + 84\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 91 + 267\cdot 379 + 146\cdot 379^{2} + 148\cdot 379^{3} + 240\cdot 379^{4} + 36\cdot 379^{5} + 192\cdot 379^{6} + 17\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 96 + 137\cdot 379 + 119\cdot 379^{2} + 182\cdot 379^{3} + 218\cdot 379^{4} + 54\cdot 379^{5} + 289\cdot 379^{6} + 309\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 97 + 41\cdot 379 + 325\cdot 379^{2} + 77\cdot 379^{3} + 328\cdot 379^{4} + 111\cdot 379^{5} + 243\cdot 379^{6} + 272\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 121 + 191\cdot 379 + 164\cdot 379^{2} + 46\cdot 379^{3} + 226\cdot 379^{4} + 89\cdot 379^{5} + 42\cdot 379^{6} + 202\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 123 + 354\cdot 379 + 224\cdot 379^{2} + 239\cdot 379^{3} + 54\cdot 379^{4} + 376\cdot 379^{5} + 314\cdot 379^{6} + 165\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 271 + 23\cdot 379 + 178\cdot 379^{2} + 156\cdot 379^{3} + 53\cdot 379^{4} + 97\cdot 379^{5} + 260\cdot 379^{6} + 242\cdot 379^{7} +O\left(379^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 288 + 310\cdot 379 + 194\cdot 379^{2} + 176\cdot 379^{3} + 321\cdot 379^{4} + 72\cdot 379^{5} + 327\cdot 379^{6} + 220\cdot 379^{7} +O\left(379^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,4,2)(3,7,8,6)$
$(1,4)(3,8)$
$(1,6,2,3,4,7,5,8)$
$(2,5)(6,7)$
$(2,5)(3,8)$
$(1,6)(2,8)(3,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $-4$
$2$ $2$ $(1,4)(2,5)$ $0$
$4$ $2$ $(2,5)(6,7)$ $0$
$4$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $0$
$4$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$4$ $2$ $(1,6)(2,3)(4,7)(5,8)$ $0$
$8$ $2$ $(1,5)(2,4)(3,8)$ $0$
$2$ $4$ $(1,5,4,2)(3,7,8,6)$ $0$
$2$ $4$ $(1,2,4,5)(3,7,8,6)$ $0$
$4$ $4$ $(1,3,4,8)(2,6,5,7)$ $0$
$4$ $4$ $(1,7,4,6)(2,8,5,3)$ $0$
$4$ $4$ $(1,2,4,5)(3,8)(6,7)$ $2$
$4$ $4$ $(1,2,4,5)$ $-2$
$8$ $8$ $(1,6,2,3,4,7,5,8)$ $0$
$8$ $8$ $(1,7,5,8,4,6,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.