Properties

Label 4.3e2_5e2_11e2.8t26.3c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$27225= 3^{2} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - x^{6} + 6 x^{5} - 2 x^{4} - 5 x^{3} + 3 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 45 + 188\cdot 379 + 177\cdot 379^{2} + 174\cdot 379^{3} + 171\cdot 379^{4} + 276\cdot 379^{5} + 296\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 154 + 80\cdot 379 + 48\cdot 379^{2} + 155\cdot 379^{3} + 168\cdot 379^{4} + 296\cdot 379^{5} + 284\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 221 + 122\cdot 379 + 71\cdot 379^{2} + 172\cdot 379^{3} + 138\cdot 379^{4} + 191\cdot 379^{5} + 357\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 249 + 219\cdot 379 + 233\cdot 379^{2} + 192\cdot 379^{3} + 326\cdot 379^{4} + 19\cdot 379^{5} + 327\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 252 + 157\cdot 379 + 128\cdot 379^{2} + 270\cdot 379^{3} + 355\cdot 379^{4} + 321\cdot 379^{5} + 112\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 266 + 90\cdot 379 + 188\cdot 379^{2} + 35\cdot 379^{3} + 174\cdot 379^{4} + 124\cdot 379^{5} + 305\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 339 + 366\cdot 379 + 81\cdot 379^{2} + 256\cdot 379^{3} + 279\cdot 379^{4} + 372\cdot 379^{5} + 197\cdot 379^{6} +O\left(379^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 371 + 289\cdot 379 + 207\cdot 379^{2} + 259\cdot 379^{3} + 280\cdot 379^{4} + 291\cdot 379^{5} + 12\cdot 379^{6} +O\left(379^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,7,4)(2,8,3,6)$
$(1,7)(6,8)$
$(2,3)(4,5)$
$(4,5)(6,8)$
$(1,6)(2,4)(3,5)(7,8)$
$(4,8,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,3)(4,5)(6,8)$$-4$
$2$$2$$(4,5)(6,8)$$0$
$4$$2$$(1,7)(6,8)$$0$
$4$$2$$(1,6)(2,4)(3,5)(7,8)$$0$
$4$$2$$(1,3)(2,7)(4,6)(5,8)$$0$
$4$$2$$(1,6)(2,5)(3,4)(7,8)$$0$
$8$$2$$(1,7)(4,6)(5,8)$$0$
$2$$4$$(1,3,7,2)(4,8,5,6)$$0$
$2$$4$$(1,3,7,2)(4,6,5,8)$$0$
$4$$4$$(1,5,7,4)(2,8,3,6)$$0$
$4$$4$$(1,6,7,8)(2,4,3,5)$$0$
$4$$4$$(4,8,5,6)$$2$
$4$$4$$(1,7)(2,3)(4,6,5,8)$$-2$
$8$$8$$(1,8,3,5,7,6,2,4)$$0$
$8$$8$$(1,8,3,4,7,6,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.