Properties

Label 4.3e2_5_191e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 5 \cdot 191^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1641645= 3^{2} \cdot 5 \cdot 191^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x^{4} + 8 x^{3} + 59 x^{2} - 99 x + 48 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 57 a + 72 + \left(55 a + 34\right)\cdot 79 + \left(12 a + 69\right)\cdot 79^{2} + \left(59 a + 61\right)\cdot 79^{3} + \left(75 a + 16\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 8 + \left(16 a + 37\right)\cdot 79 + \left(41 a + 6\right)\cdot 79^{2} + \left(38 a + 13\right)\cdot 79^{3} + \left(48 a + 47\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 10\cdot 79 + 62\cdot 79^{2} + 66\cdot 79^{3} + 28\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 18\cdot 79 + 41\cdot 79^{2} + 55\cdot 79^{3} + 53\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 50 + \left(23 a + 33\right)\cdot 79 + \left(66 a + 26\right)\cdot 79^{2} + \left(19 a + 29\right)\cdot 79^{3} + \left(3 a + 33\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 49 a + 38 + \left(62 a + 23\right)\cdot 79 + \left(37 a + 31\right)\cdot 79^{2} + \left(40 a + 10\right)\cdot 79^{3} + \left(30 a + 57\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(2,4)$ $2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $-2$
$4$ $3$ $(1,3,5)$ $1$
$18$ $4$ $(1,2,3,4)(5,6)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $0$
$12$ $6$ $(1,3,5)(2,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.