Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 6 + 12 a\cdot 13 + \left(a + 8\right)\cdot 13^{2} + \left(a + 3\right)\cdot 13^{3} + 5 a\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 + 9\cdot 13 + 11\cdot 13^{2} + 9\cdot 13^{3} + 4\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 a + 10 + \left(6 a + 9\right)\cdot 13 + 12 a\cdot 13^{2} + 9\cdot 13^{3} + \left(11 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 5 a + 5 + \left(6 a + 8\right)\cdot 13 + 6\cdot 13^{2} + \left(12 a + 10\right)\cdot 13^{3} + \left(a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 + 6\cdot 13 + 13^{2} + 3\cdot 13^{3} + 3\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 4 a + 2 + 4\cdot 13 + \left(11 a + 10\right)\cdot 13^{2} + \left(11 a + 2\right)\cdot 13^{3} + \left(7 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,5)(4,6)$ |
| $(2,3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $6$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ |
| $6$ | $2$ | $(3,4)$ | $-2$ |
| $9$ | $2$ | $(3,4)(5,6)$ | $0$ |
| $4$ | $3$ | $(1,5,6)(2,3,4)$ | $-2$ |
| $4$ | $3$ | $(1,5,6)$ | $1$ |
| $18$ | $4$ | $(1,2)(3,6,4,5)$ | $0$ |
| $12$ | $6$ | $(1,3,5,4,6,2)$ | $0$ |
| $12$ | $6$ | $(1,5,6)(3,4)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.