Properties

Label 4.3e2_2221e3.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{2} \cdot 2221^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$98602558749= 3^{2} \cdot 2221^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 15 x^{4} - 21 x^{3} + 101 x^{2} + 296 x - 213 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 35 + 14 a\cdot 37 + \left(28 a + 6\right)\cdot 37^{2} + \left(32 a + 29\right)\cdot 37^{3} + \left(5 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 27\cdot 37 + 14\cdot 37^{2} + 26\cdot 37^{3} + 24\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 15 + \left(a + 12\right)\cdot 37 + \left(22 a + 23\right)\cdot 37^{2} + \left(33 a + 4\right)\cdot 37^{3} + \left(19 a + 20\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 21 + \left(22 a + 6\right)\cdot 37 + \left(8 a + 31\right)\cdot 37^{2} + \left(4 a + 20\right)\cdot 37^{3} + \left(31 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 29 + \left(35 a + 33\right)\cdot 37 + \left(14 a + 35\right)\cdot 37^{2} + \left(3 a + 5\right)\cdot 37^{3} + \left(17 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 29\cdot 37 + 36\cdot 37^{2} + 23\cdot 37^{3} + 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(2,3,5)$ $-2$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,6,5)$ $1$
$12$ $6$ $(1,4,6)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.