Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 22 + 96\cdot 103 + 36\cdot 103^{2} + 93\cdot 103^{3} + 2\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 39 a + 63 + \left(61 a + 89\right)\cdot 103 + \left(49 a + 33\right)\cdot 103^{2} + \left(28 a + 5\right)\cdot 103^{3} + \left(84 a + 15\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 55 a + 34 + \left(16 a + 76\right)\cdot 103 + \left(43 a + 94\right)\cdot 103^{2} + \left(75 a + 96\right)\cdot 103^{3} + \left(a + 43\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 48 a + 89 + \left(86 a + 37\right)\cdot 103 + \left(59 a + 18\right)\cdot 103^{2} + \left(27 a + 26\right)\cdot 103^{3} + \left(101 a + 73\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 64 a + 102 + \left(41 a + 8\right)\cdot 103 + \left(53 a + 22\right)\cdot 103^{2} + \left(74 a + 87\right)\cdot 103^{3} + \left(18 a + 70\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $10$ |
$2$ |
$(1,2)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.