Properties

Label 4.3e2_1567e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 3^{2} \cdot 1567^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$34629761367= 3^{2} \cdot 1567^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.1567.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 15 + \left(33 a + 21\right)\cdot 41 + \left(23 a + 1\right)\cdot 41^{2} + \left(23 a + 29\right)\cdot 41^{3} + \left(32 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 a + 39 + \left(7 a + 30\right)\cdot 41 + \left(17 a + 39\right)\cdot 41^{2} + \left(17 a + 34\right)\cdot 41^{3} + \left(8 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 9\cdot 41 + 14\cdot 41^{2} + 10\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 24 + \left(4 a + 27\right)\cdot 41 + \left(20 a + 5\right)\cdot 41^{2} + \left(37 a + 19\right)\cdot 41^{3} + \left(15 a + 34\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 1 + \left(36 a + 34\right)\cdot 41 + \left(20 a + 20\right)\cdot 41^{2} + \left(3 a + 29\right)\cdot 41^{3} + \left(25 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.