Properties

Label 4.3e2_13e4.8t16.2
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 3^{2} \cdot 13^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$257049= 3^{2} \cdot 13^{4} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} + 6 x^{4} - 5 x^{3} - 2 x^{2} + 4 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 367 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 53 + 253\cdot 367 + 250\cdot 367^{2} + 330\cdot 367^{3} + 45\cdot 367^{4} + 280\cdot 367^{5} + 71\cdot 367^{6} + 140\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 95 + 214\cdot 367 + 361\cdot 367^{2} + 254\cdot 367^{3} + 163\cdot 367^{4} + 186\cdot 367^{5} + 56\cdot 367^{6} + 267\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 118 + 224\cdot 367 + 28\cdot 367^{2} + 191\cdot 367^{3} + 53\cdot 367^{4} + 17\cdot 367^{5} + 179\cdot 367^{6} + 209\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 167 + 242\cdot 367 + 198\cdot 367^{2} + 220\cdot 367^{3} + 313\cdot 367^{4} + 60\cdot 367^{5} + 218\cdot 367^{6} + 271\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 201 + 124\cdot 367 + 168\cdot 367^{2} + 146\cdot 367^{3} + 53\cdot 367^{4} + 306\cdot 367^{5} + 148\cdot 367^{6} + 95\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 250 + 142\cdot 367 + 338\cdot 367^{2} + 175\cdot 367^{3} + 313\cdot 367^{4} + 349\cdot 367^{5} + 187\cdot 367^{6} + 157\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 273 + 152\cdot 367 + 5\cdot 367^{2} + 112\cdot 367^{3} + 203\cdot 367^{4} + 180\cdot 367^{5} + 310\cdot 367^{6} + 99\cdot 367^{7} +O\left(367^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 315 + 113\cdot 367 + 116\cdot 367^{2} + 36\cdot 367^{3} + 321\cdot 367^{4} + 86\cdot 367^{5} + 295\cdot 367^{6} + 226\cdot 367^{7} +O\left(367^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,4,2,6,8,5,7,3)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$4$ $2$ $(1,8)(4,5)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$4$ $8$ $(1,4,2,6,8,5,7,3)$ $0$
$4$ $8$ $(1,6,7,4,8,3,2,5)$ $0$
$4$ $8$ $(1,5,7,3,8,4,2,6)$ $0$
$4$ $8$ $(1,3,2,5,8,6,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.