Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 367 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 53 + 253\cdot 367 + 250\cdot 367^{2} + 330\cdot 367^{3} + 45\cdot 367^{4} + 280\cdot 367^{5} + 71\cdot 367^{6} + 140\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 95 + 214\cdot 367 + 361\cdot 367^{2} + 254\cdot 367^{3} + 163\cdot 367^{4} + 186\cdot 367^{5} + 56\cdot 367^{6} + 267\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 118 + 224\cdot 367 + 28\cdot 367^{2} + 191\cdot 367^{3} + 53\cdot 367^{4} + 17\cdot 367^{5} + 179\cdot 367^{6} + 209\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 167 + 242\cdot 367 + 198\cdot 367^{2} + 220\cdot 367^{3} + 313\cdot 367^{4} + 60\cdot 367^{5} + 218\cdot 367^{6} + 271\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 201 + 124\cdot 367 + 168\cdot 367^{2} + 146\cdot 367^{3} + 53\cdot 367^{4} + 306\cdot 367^{5} + 148\cdot 367^{6} + 95\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 250 + 142\cdot 367 + 338\cdot 367^{2} + 175\cdot 367^{3} + 313\cdot 367^{4} + 349\cdot 367^{5} + 187\cdot 367^{6} + 157\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 273 + 152\cdot 367 + 5\cdot 367^{2} + 112\cdot 367^{3} + 203\cdot 367^{4} + 180\cdot 367^{5} + 310\cdot 367^{6} + 99\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 315 + 113\cdot 367 + 116\cdot 367^{2} + 36\cdot 367^{3} + 321\cdot 367^{4} + 86\cdot 367^{5} + 295\cdot 367^{6} + 226\cdot 367^{7} +O\left(367^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,6)(4,5)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,4,2,6,8,5,7,3)$ |
| $(2,7)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,8)(4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,4,6,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,2,6,8,5,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,7,4,8,3,2,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,5,7,3,8,4,2,6)$ |
$0$ |
| $4$ |
$8$ |
$(1,3,2,5,8,6,7,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.