Properties

Label 4.3e2_13e4.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 3^{2} \cdot 13^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$257049= 3^{2} \cdot 13^{4} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} - 7 x^{4} + 21 x^{3} - 2 x^{2} - 9 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 367 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 131 + 204\cdot 367 + 39\cdot 367^{2} + 20\cdot 367^{3} + 237\cdot 367^{4} + 148\cdot 367^{5} + 287\cdot 367^{6} + 214\cdot 367^{7} + 35\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 166 + 253\cdot 367 + 285\cdot 367^{2} + 130\cdot 367^{3} + 87\cdot 367^{4} + 339\cdot 367^{5} + 300\cdot 367^{6} + 20\cdot 367^{7} + 144\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 171 + 253\cdot 367 + 20\cdot 367^{3} + 13\cdot 367^{4} + 210\cdot 367^{5} + 306\cdot 367^{6} + 189\cdot 367^{7} + 79\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 183 + 24\cdot 367 + 237\cdot 367^{2} + 7\cdot 367^{3} + 51\cdot 367^{4} + 156\cdot 367^{5} + 252\cdot 367^{6} + 331\cdot 367^{7} + 128\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 185 + 342\cdot 367 + 129\cdot 367^{2} + 359\cdot 367^{3} + 315\cdot 367^{4} + 210\cdot 367^{5} + 114\cdot 367^{6} + 35\cdot 367^{7} + 238\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 197 + 113\cdot 367 + 366\cdot 367^{2} + 346\cdot 367^{3} + 353\cdot 367^{4} + 156\cdot 367^{5} + 60\cdot 367^{6} + 177\cdot 367^{7} + 287\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 202 + 113\cdot 367 + 81\cdot 367^{2} + 236\cdot 367^{3} + 279\cdot 367^{4} + 27\cdot 367^{5} + 66\cdot 367^{6} + 346\cdot 367^{7} + 222\cdot 367^{8} +O\left(367^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 237 + 162\cdot 367 + 327\cdot 367^{2} + 346\cdot 367^{3} + 129\cdot 367^{4} + 218\cdot 367^{5} + 79\cdot 367^{6} + 152\cdot 367^{7} + 331\cdot 367^{8} +O\left(367^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(1,7,4,3,8,2,5,6)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(2,7)(3,6)$ $0$
$4$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$4$ $8$ $(1,7,4,3,8,2,5,6)$ $0$
$4$ $8$ $(1,3,5,7,8,6,4,2)$ $0$
$4$ $8$ $(1,7,4,6,8,2,5,3)$ $0$
$4$ $8$ $(1,6,5,7,8,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.