Properties

Label 4.3e2_13e3_97e3.8t35.2
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 3^{2} \cdot 13^{3} \cdot 97^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$18046283229= 3^{2} \cdot 13^{3} \cdot 97^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 2 x^{5} - x^{4} + x^{3} + 3 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 11 + \left(6 a + 11\right)\cdot 19 + \left(11 a + 13\right)\cdot 19^{2} + \left(6 a + 12\right)\cdot 19^{3} + \left(16 a + 11\right)\cdot 19^{4} + \left(6 a + 12\right)\cdot 19^{5} + \left(13 a + 9\right)\cdot 19^{6} + \left(12 a + 12\right)\cdot 19^{7} + \left(10 a + 16\right)\cdot 19^{8} + \left(12 a + 1\right)\cdot 19^{9} + \left(5 a + 15\right)\cdot 19^{10} + 19^{11} + \left(2 a + 9\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 15 + \left(12 a + 13\right)\cdot 19 + \left(7 a + 18\right)\cdot 19^{2} + \left(12 a + 7\right)\cdot 19^{3} + \left(2 a + 2\right)\cdot 19^{4} + \left(12 a + 3\right)\cdot 19^{5} + \left(5 a + 16\right)\cdot 19^{6} + \left(6 a + 11\right)\cdot 19^{7} + \left(8 a + 14\right)\cdot 19^{8} + \left(6 a + 3\right)\cdot 19^{9} + \left(13 a + 8\right)\cdot 19^{10} + \left(18 a + 15\right)\cdot 19^{11} + \left(16 a + 10\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 14 + 3\cdot 19 + 4\cdot 19^{2} + 9\cdot 19^{3} + 6\cdot 19^{4} + 5\cdot 19^{5} + 19^{6} + 11\cdot 19^{7} + 10\cdot 19^{8} + 11\cdot 19^{9} + 19^{10} + 18\cdot 19^{11} + 5\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 3 a + \left(12 a + 4\right)\cdot 19 + \left(8 a + 12\right)\cdot 19^{2} + \left(17 a + 17\right)\cdot 19^{3} + \left(14 a + 11\right)\cdot 19^{4} + \left(16 a + 3\right)\cdot 19^{5} + \left(17 a + 2\right)\cdot 19^{6} + \left(9 a + 18\right)\cdot 19^{7} + \left(18 a + 1\right)\cdot 19^{8} + \left(8 a + 4\right)\cdot 19^{9} + \left(10 a + 17\right)\cdot 19^{10} + \left(13 a + 3\right)\cdot 19^{11} + \left(12 a + 17\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 3 + \left(6 a + 13\right)\cdot 19 + \left(10 a + 8\right)\cdot 19^{2} + \left(a + 7\right)\cdot 19^{3} + \left(4 a + 9\right)\cdot 19^{4} + \left(2 a + 5\right)\cdot 19^{5} + \left(a + 3\right)\cdot 19^{6} + \left(9 a + 10\right)\cdot 19^{7} + 10\cdot 19^{8} + \left(10 a + 13\right)\cdot 19^{9} + \left(8 a + 18\right)\cdot 19^{10} + \left(5 a + 6\right)\cdot 19^{11} + \left(6 a + 16\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 5 a + \left(15 a + 13\right)\cdot 19 + \left(12 a + 13\right)\cdot 19^{2} + \left(4 a + 10\right)\cdot 19^{3} + \left(10 a + 15\right)\cdot 19^{4} + \left(12 a + 12\right)\cdot 19^{5} + \left(9 a + 8\right)\cdot 19^{6} + \left(6 a + 8\right)\cdot 19^{7} + 4 a\cdot 19^{8} + \left(5 a + 3\right)\cdot 19^{9} + \left(4 a + 5\right)\cdot 19^{10} + \left(3 a + 17\right)\cdot 19^{11} + \left(8 a + 5\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 14 a + 5 + \left(3 a + 4\right)\cdot 19 + \left(6 a + 11\right)\cdot 19^{2} + \left(14 a + 2\right)\cdot 19^{3} + \left(8 a + 2\right)\cdot 19^{4} + \left(6 a + 15\right)\cdot 19^{5} + \left(9 a + 5\right)\cdot 19^{6} + \left(12 a + 5\right)\cdot 19^{7} + \left(14 a + 17\right)\cdot 19^{8} + \left(13 a + 3\right)\cdot 19^{9} + \left(14 a + 4\right)\cdot 19^{10} + \left(15 a + 16\right)\cdot 19^{11} + \left(10 a + 10\right)\cdot 19^{12} +O\left(19^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 10 + 12\cdot 19 + 12\cdot 19^{2} + 7\cdot 19^{3} + 16\cdot 19^{4} + 17\cdot 19^{5} + 9\cdot 19^{6} + 17\cdot 19^{7} + 3\cdot 19^{8} + 15\cdot 19^{9} + 5\cdot 19^{10} + 15\cdot 19^{11} + 18\cdot 19^{12} +O\left(19^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,8)$
$(4,7)$
$(1,2)$
$(1,8,2,3)(4,7)(5,6)$
$(5,6)$
$(1,6)(2,5)(3,4,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,8)(4,7)(5,6)$ $-4$
$2$ $2$ $(1,2)(3,8)$ $0$
$4$ $2$ $(1,2)$ $-2$
$4$ $2$ $(3,8)(4,7)$ $0$
$4$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $0$
$4$ $2$ $(1,8)(2,3)(4,7)(5,6)$ $2$
$4$ $2$ $(1,2)(3,8)(4,7)$ $2$
$4$ $2$ $(1,8)(2,3)$ $-2$
$8$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$8$ $2$ $(1,8)(2,3)(5,6)$ $0$
$4$ $4$ $(1,8,2,3)(4,7)(5,6)$ $-2$
$4$ $4$ $(1,8,2,3)(4,5,7,6)$ $0$
$4$ $4$ $(4,5,7,6)$ $2$
$8$ $4$ $(1,5,2,6)(3,4,8,7)$ $0$
$8$ $4$ $(1,8,2,3)(5,6)$ $0$
$8$ $4$ $(1,8)(2,3)(4,6,7,5)$ $0$
$16$ $4$ $(1,6)(2,5)(3,4,8,7)$ $0$
$16$ $4$ $(1,7,8,5)(2,4,3,6)$ $0$
$16$ $8$ $(1,7,8,6,2,4,3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.