Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a + \left(11 a + 7\right)\cdot 19 + 9 a\cdot 19^{2} + 8 a\cdot 19^{3} + \left(8 a + 16\right)\cdot 19^{4} + \left(15 a + 8\right)\cdot 19^{5} + \left(4 a + 1\right)\cdot 19^{6} + \left(14 a + 9\right)\cdot 19^{7} + \left(6 a + 14\right)\cdot 19^{8} + \left(18 a + 8\right)\cdot 19^{9} + \left(14 a + 7\right)\cdot 19^{10} + \left(12 a + 9\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 a + 13 + \left(7 a + 5\right)\cdot 19 + \left(9 a + 17\right)\cdot 19^{2} + \left(10 a + 17\right)\cdot 19^{3} + \left(10 a + 15\right)\cdot 19^{4} + \left(3 a + 15\right)\cdot 19^{5} + \left(14 a + 9\right)\cdot 19^{6} + \left(4 a + 18\right)\cdot 19^{7} + \left(12 a + 6\right)\cdot 19^{8} + 19^{9} + \left(4 a + 4\right)\cdot 19^{10} + \left(6 a + 7\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 18 + 11\cdot 19 + 17\cdot 19^{2} + 6\cdot 19^{3} + 16\cdot 19^{4} + 9\cdot 19^{5} + 9\cdot 19^{6} + 7\cdot 19^{7} + 8\cdot 19^{9} + 17\cdot 19^{10} + 15\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 18 a + \left(12 a + 17\right)\cdot 19 + \left(6 a + 18\right)\cdot 19^{2} + \left(10 a + 7\right)\cdot 19^{3} + \left(a + 16\right)\cdot 19^{4} + \left(8 a + 3\right)\cdot 19^{5} + \left(2 a + 6\right)\cdot 19^{6} + \left(3 a + 12\right)\cdot 19^{7} + \left(5 a + 1\right)\cdot 19^{8} + \left(9 a + 9\right)\cdot 19^{9} + \left(3 a + 12\right)\cdot 19^{10} + \left(12 a + 12\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ a + 18 + \left(6 a + 11\right)\cdot 19 + \left(12 a + 12\right)\cdot 19^{2} + \left(8 a + 11\right)\cdot 19^{3} + \left(17 a + 7\right)\cdot 19^{4} + \left(10 a + 10\right)\cdot 19^{5} + 16 a\cdot 19^{6} + \left(15 a + 13\right)\cdot 19^{7} + \left(13 a + 3\right)\cdot 19^{8} + \left(9 a + 13\right)\cdot 19^{9} + \left(15 a + 6\right)\cdot 19^{10} + \left(6 a + 2\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a + \left(16 a + 10\right)\cdot 19 + \left(18 a + 12\right)\cdot 19^{2} + \left(12 a + 4\right)\cdot 19^{3} + \left(2 a + 9\right)\cdot 19^{4} + \left(13 a + 17\right)\cdot 19^{5} + \left(8 a + 10\right)\cdot 19^{6} + \left(10 a + 15\right)\cdot 19^{7} + \left(4 a + 13\right)\cdot 19^{8} + \left(6 a + 17\right)\cdot 19^{9} + \left(12 a + 10\right)\cdot 19^{10} + \left(8 a + 6\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 2 a + 17 + \left(2 a + 9\right)\cdot 19 + 14\cdot 19^{2} + \left(6 a + 17\right)\cdot 19^{3} + \left(16 a + 17\right)\cdot 19^{4} + \left(5 a + 8\right)\cdot 19^{5} + \left(10 a + 6\right)\cdot 19^{6} + \left(8 a + 17\right)\cdot 19^{7} + \left(14 a + 7\right)\cdot 19^{8} + 12 a\cdot 19^{9} + \left(6 a + 17\right)\cdot 19^{10} + \left(10 a + 2\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 11 + 2\cdot 19 + 19^{2} + 9\cdot 19^{3} + 14\cdot 19^{4} + 12\cdot 19^{6} + 19^{7} + 8\cdot 19^{8} + 17\cdot 19^{9} + 18\cdot 19^{10} + 18\cdot 19^{11} +O\left(19^{ 12 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(4,5)$ |
| $(2,4)$ |
| $(1,3)(2,6)(4,7)(5,8)$ |
| $(6,7)$ |
| $(3,8)$ |
| $(1,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,5)(2,4)(3,8)(6,7)$ |
$-4$ |
| $2$ |
$2$ |
$(3,8)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(3,8)$ |
$2$ |
| $4$ |
$2$ |
$(1,2)(3,6)(4,5)(7,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(3,8)$ |
$0$ |
| $4$ |
$2$ |
$(3,6)(7,8)$ |
$-2$ |
| $4$ |
$2$ |
$(1,2)(3,8)(4,5)(6,7)$ |
$2$ |
| $4$ |
$2$ |
$(1,5)(3,8)(6,7)$ |
$-2$ |
| $8$ |
$2$ |
$(1,3)(2,6)(4,7)(5,8)$ |
$0$ |
| $8$ |
$2$ |
$(1,2)(3,8)(4,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,5,2)(3,7,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(3,7,8,6)$ |
$-2$ |
| $4$ |
$4$ |
$(1,4,5,2)(3,8)(6,7)$ |
$2$ |
| $8$ |
$4$ |
$(1,3,5,8)(2,6,4,7)$ |
$0$ |
| $8$ |
$4$ |
$(1,2)(3,7,8,6)(4,5)$ |
$0$ |
| $8$ |
$4$ |
$(1,5)(3,7,8,6)$ |
$0$ |
| $16$ |
$4$ |
$(1,3,2,6)(4,7,5,8)$ |
$0$ |
| $16$ |
$4$ |
$(1,3,5,8)(2,6)(4,7)$ |
$0$ |
| $16$ |
$8$ |
$(1,3,4,7,5,8,2,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.