Properties

Label 4.3e2_13e2_37e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{2} \cdot 13^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$2082249= 3^{2} \cdot 13^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 2 x^{6} + 15 x^{5} - 20 x^{4} + 15 x^{3} + 30 x^{2} - 108 x + 81 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 27 + 252\cdot 337 + 134\cdot 337^{2} + 322\cdot 337^{3} + 278\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 237\cdot 337 + 117\cdot 337^{2} + 327\cdot 337^{3} + 273\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 328\cdot 337 + 318\cdot 337^{2} + 244\cdot 337^{3} + 112\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 62 + 16\cdot 337 + 259\cdot 337^{2} + 284\cdot 337^{3} + 185\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 169 + 234\cdot 337 + 122\cdot 337^{2} + 107\cdot 337^{3} + 119\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 179 + 24\cdot 337 + 326\cdot 337^{2} + 29\cdot 337^{3} + 44\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 195 + 181\cdot 337 + 198\cdot 337^{2} + 209\cdot 337^{3} + 32\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 276 + 73\cdot 337 + 207\cdot 337^{2} + 158\cdot 337^{3} + 300\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,3)(2,6,7,4)$
$(1,2,8,7)(3,6,5,4)$
$(1,8)(2,7)(3,5)(4,6)$
$(1,7)(2,8)(4,6)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,5)(4,6)$$-4$
$2$$2$$(1,8)(2,7)$$0$
$4$$2$$(1,7)(2,8)(4,6)$$0$
$4$$2$$(1,3)(2,4)(5,8)(6,7)$$0$
$4$$2$$(1,2)(4,6)(7,8)$$0$
$2$$4$$(1,2,8,7)(3,6,5,4)$$0$
$2$$4$$(1,7,8,2)(3,6,5,4)$$0$
$4$$4$$(1,5,8,3)(2,6,7,4)$$0$
$4$$8$$(1,5,2,4,8,3,7,6)$$0$
$4$$8$$(1,3,7,4,8,5,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.