Properties

Label 4.3e2_13e2_37e2.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{2} \cdot 13^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$2082249= 3^{2} \cdot 13^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 5 x^{6} + 27 x^{5} - 11 x^{4} - 60 x^{3} + 69 x^{2} - 18 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 43 + 20\cdot 337 + 242\cdot 337^{2} + 138\cdot 337^{3} + 166\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 133 + 11\cdot 337 + 213\cdot 337^{2} + 166\cdot 337^{3} + 105\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 172 + 49\cdot 337 + 56\cdot 337^{2} + 201\cdot 337^{3} + 193\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 214 + 267\cdot 337 + 270\cdot 337^{2} + 87\cdot 337^{3} + 229\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 258 + 291\cdot 337 + 143\cdot 337^{2} + 243\cdot 337^{3} + 224\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 279 + 173\cdot 337 + 30\cdot 337^{2} + 183\cdot 337^{3} + 326\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 289 + 287\cdot 337 + 305\cdot 337^{2} + 285\cdot 337^{3} + 275\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 300 + 245\cdot 337 + 85\cdot 337^{2} + 41\cdot 337^{3} + 163\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,6,7,5,3,4)$
$(2,5)(4,6)$
$(1,3,7,8)(2,4,5,6)$
$(1,7)(2,6)(4,5)$
$(1,7)(2,5)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,5)(3,8)(4,6)$ $-4$
$2$ $2$ $(2,5)(4,6)$ $0$
$4$ $2$ $(1,7)(2,6)(4,5)$ $0$
$4$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $0$
$4$ $2$ $(1,7)(2,4)(5,6)$ $0$
$2$ $4$ $(1,8,7,3)(2,6,5,4)$ $0$
$2$ $4$ $(1,3,7,8)(2,6,5,4)$ $0$
$4$ $4$ $(1,2,7,5)(3,6,8,4)$ $0$
$4$ $8$ $(1,2,8,6,7,5,3,4)$ $0$
$4$ $8$ $(1,5,3,6,7,2,8,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.