Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 823 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 39 + 731\cdot 823 + 15\cdot 823^{2} + 286\cdot 823^{3} + 156\cdot 823^{4} + 761\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 126 + 533\cdot 823 + 352\cdot 823^{2} + 551\cdot 823^{3} + 586\cdot 823^{4} + 88\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 157 + 531\cdot 823 + 205\cdot 823^{2} + 500\cdot 823^{3} + 474\cdot 823^{4} + 570\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 227 + 761\cdot 823 + 375\cdot 823^{2} + 408\cdot 823^{3} + 817\cdot 823^{4} + 122\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 338 + 423\cdot 823 + 58\cdot 823^{2} + 525\cdot 823^{3} + 692\cdot 823^{4} + 351\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 413 + 815\cdot 823 + 82\cdot 823^{2} + 389\cdot 823^{3} + 9\cdot 823^{4} + 626\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 464 + 698\cdot 823 + 420\cdot 823^{2} + 810\cdot 823^{3} + 362\cdot 823^{4} + 746\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 706 + 443\cdot 823 + 133\cdot 823^{2} + 644\cdot 823^{3} + 191\cdot 823^{4} + 24\cdot 823^{5} +O\left(823^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)$ |
| $(2,8)$ |
| $(5,7)$ |
| $(1,8,3,2)(4,5,6,7)$ |
| $(2,6,8,4)(5,7)$ |
| $(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,8)(4,6)(5,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(5,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)$ |
$-2$ |
| $4$ |
$2$ |
$(1,7)(2,4)(3,5)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,8)(4,6)$ |
$2$ |
| $4$ |
$2$ |
$(1,3)(2,6)(4,8)(5,7)$ |
$-2$ |
| $4$ |
$2$ |
$(1,5)(3,7)$ |
$2$ |
| $8$ |
$2$ |
$(1,4)(2,5)(3,6)(7,8)$ |
$0$ |
| $8$ |
$2$ |
$(2,6)(4,8)(5,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,3,5)(2,6,8,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,3,7)$ |
$-2$ |
| $4$ |
$4$ |
$(1,7,3,5)(2,8)(4,6)$ |
$2$ |
| $8$ |
$4$ |
$(1,8,3,2)(4,5,6,7)$ |
$0$ |
| $8$ |
$4$ |
$(1,5,3,7)(2,8)$ |
$0$ |
| $8$ |
$4$ |
$(1,5)(2,6,8,4)(3,7)$ |
$0$ |
| $16$ |
$4$ |
$(1,4,7,2)(3,6,5,8)$ |
$0$ |
| $16$ |
$4$ |
$(1,8)(2,3)(4,5,6,7)$ |
$0$ |
| $16$ |
$8$ |
$(1,4,7,2,3,6,5,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.