Properties

Label 4.3e2_13_109.8t35.2
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 3^{2} \cdot 13 \cdot 109 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$12753= 3^{2} \cdot 13 \cdot 109 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - 3 x^{5} + x^{4} - 2 x^{3} + 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 823 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 39 + 731\cdot 823 + 15\cdot 823^{2} + 286\cdot 823^{3} + 156\cdot 823^{4} + 761\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 126 + 533\cdot 823 + 352\cdot 823^{2} + 551\cdot 823^{3} + 586\cdot 823^{4} + 88\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 157 + 531\cdot 823 + 205\cdot 823^{2} + 500\cdot 823^{3} + 474\cdot 823^{4} + 570\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 227 + 761\cdot 823 + 375\cdot 823^{2} + 408\cdot 823^{3} + 817\cdot 823^{4} + 122\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 338 + 423\cdot 823 + 58\cdot 823^{2} + 525\cdot 823^{3} + 692\cdot 823^{4} + 351\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 413 + 815\cdot 823 + 82\cdot 823^{2} + 389\cdot 823^{3} + 9\cdot 823^{4} + 626\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 464 + 698\cdot 823 + 420\cdot 823^{2} + 810\cdot 823^{3} + 362\cdot 823^{4} + 746\cdot 823^{5} +O\left(823^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 706 + 443\cdot 823 + 133\cdot 823^{2} + 644\cdot 823^{3} + 191\cdot 823^{4} + 24\cdot 823^{5} +O\left(823^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)$
$(2,8)$
$(5,7)$
$(1,8,3,2)(4,5,6,7)$
$(2,6,8,4)(5,7)$
$(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $-4$
$2$ $2$ $(1,3)(5,7)$ $0$
$4$ $2$ $(1,3)$ $2$
$4$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $0$
$4$ $2$ $(1,3)(2,8)$ $0$
$4$ $2$ $(1,3)(2,8)(4,6)$ $-2$
$4$ $2$ $(1,3)(2,6)(4,8)(5,7)$ $-2$
$4$ $2$ $(1,5)(3,7)$ $2$
$8$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$8$ $2$ $(2,6)(4,8)(5,7)$ $0$
$4$ $4$ $(1,7,3,5)(2,6,8,4)$ $0$
$4$ $4$ $(1,5,3,7)$ $2$
$4$ $4$ $(1,7,3,5)(2,8)(4,6)$ $-2$
$8$ $4$ $(1,8,3,2)(4,5,6,7)$ $0$
$8$ $4$ $(1,5,3,7)(2,8)$ $0$
$8$ $4$ $(1,5)(2,6,8,4)(3,7)$ $0$
$16$ $4$ $(1,4,7,2)(3,6,5,8)$ $0$
$16$ $4$ $(1,8)(2,3)(4,5,6,7)$ $0$
$16$ $8$ $(1,4,7,2,3,6,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.