Properties

Label 4.3_7e2_499e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3 \cdot 7^{2} \cdot 499^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$36603147= 3 \cdot 7^{2} \cdot 499^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} - 41 x^{3} + 89 x^{2} + 318 x - 171 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 42 a + 11 + \left(15 a + 40\right)\cdot 43 + \left(13 a + 16\right)\cdot 43^{2} + \left(39 a + 38\right)\cdot 43^{3} + \left(32 a + 21\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 28\cdot 43 + 11\cdot 43^{2} + 22\cdot 43^{3} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 31\cdot 43 + 11\cdot 43^{2} + 26\cdot 43^{3} + 5\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 18 + \left(11 a + 33\right)\cdot 43 + \left(2 a + 41\right)\cdot 43^{2} + \left(28 a + 18\right)\cdot 43^{3} + 40 a\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 39 + \left(31 a + 23\right)\cdot 43 + \left(40 a + 32\right)\cdot 43^{2} + \left(14 a + 1\right)\cdot 43^{3} + \left(2 a + 13\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 10 + \left(27 a + 14\right)\cdot 43 + \left(29 a + 14\right)\cdot 43^{2} + \left(3 a + 21\right)\cdot 43^{3} + \left(10 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(2,4)$$2$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,6)(2,4,5)$$-2$
$4$$3$$(1,3,6)$$1$
$18$$4$$(1,2,3,4)(5,6)$$0$
$12$$6$$(1,4,3,5,6,2)$$0$
$12$$6$$(1,3,6)(2,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.