Properties

Label 4.3_4877.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 3 \cdot 4877 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$14631= 3 \cdot 4877 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 3 x^{3} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3_4877.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 31 + \left(36 a + 36\right)\cdot 41 + \left(33 a + 32\right)\cdot 41^{2} + \left(15 a + 6\right)\cdot 41^{3} + \left(12 a + 36\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 5 + \left(4 a + 17\right)\cdot 41 + \left(7 a + 16\right)\cdot 41^{2} + \left(25 a + 20\right)\cdot 41^{3} + \left(28 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 + 3\cdot 41 + 31\cdot 41^{2} + 22\cdot 41^{3} + 36\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 + 15\cdot 41 + 13\cdot 41^{2} + 29\cdot 41^{3} + 19\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 8\cdot 41 + 29\cdot 41^{2} + 2\cdot 41^{3} + 14\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.