Properties

Label 4.3_1549e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3 \cdot 1549^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$7198203= 3 \cdot 1549^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 2 x^{4} + 5 x^{3} + x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 6\cdot 7 + 3\cdot 7^{3} + 2\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 6\cdot 7 + 3\cdot 7^{2} + 2\cdot 7^{3} + 2\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + \left(2 a + 2\right)\cdot 7 + \left(2 a + 5\right)\cdot 7^{2} + \left(2 a + 5\right)\cdot 7^{3} + \left(4 a + 4\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 3 + \left(6 a + 3\right)\cdot 7 + \left(a + 5\right)\cdot 7^{2} + \left(6 a + 6\right)\cdot 7^{3} + \left(3 a + 6\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 6 + \left(4 a + 5\right)\cdot 7 + \left(4 a + 4\right)\cdot 7^{2} + \left(4 a + 5\right)\cdot 7^{3} + \left(2 a + 6\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 2 + 4\cdot 7 + 5 a\cdot 7^{2} + 4\cdot 7^{3} + \left(3 a + 4\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)$ $-2$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $-1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.