Properties

Label 4.3_13e2_109e2.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 3 \cdot 13^{2} \cdot 109^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$6023667= 3 \cdot 13^{2} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 17 x^{6} - 35 x^{5} + 100 x^{4} - 89 x^{3} + 313 x^{2} + 63 x + 321 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 823 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 106 + 663\cdot 823 + 318\cdot 823^{2} + 37\cdot 823^{3} + 138\cdot 823^{4} + 195\cdot 823^{5} + 812\cdot 823^{6} + 723\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 167 + 751\cdot 823 + 806\cdot 823^{2} + 587\cdot 823^{3} + 601\cdot 823^{4} + 332\cdot 823^{5} + 745\cdot 823^{6} + 594\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 362 + 234\cdot 823 + 765\cdot 823^{2} + 174\cdot 823^{3} + 314\cdot 823^{4} + 112\cdot 823^{5} + 716\cdot 823^{6} + 173\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 631 + 162\cdot 823 + 768\cdot 823^{2} + 293\cdot 823^{3} + 7\cdot 823^{4} + 363\cdot 823^{5} + 234\cdot 823^{6} + 793\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 651 + 308\cdot 823 + 234\cdot 823^{2} + 349\cdot 823^{3} + 657\cdot 823^{4} + 155\cdot 823^{5} + 504\cdot 823^{6} + 498\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 672 + 742\cdot 823 + 690\cdot 823^{2} + 222\cdot 823^{3} + 477\cdot 823^{4} + 459\cdot 823^{5} + 10\cdot 823^{6} + 421\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 751 + 655\cdot 823 + 752\cdot 823^{2} + 184\cdot 823^{3} + 211\cdot 823^{4} + 305\cdot 823^{5} + 59\cdot 823^{6} + 163\cdot 823^{7} +O\left(823^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 778 + 595\cdot 823 + 600\cdot 823^{2} + 617\cdot 823^{3} + 61\cdot 823^{4} + 545\cdot 823^{5} + 209\cdot 823^{6} + 746\cdot 823^{7} +O\left(823^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,6)(7,8)$
$(1,2)(4,6)$
$(1,8)(2,7)(3,5)(4,6)$
$(1,4,2,6)(3,8,5,7)$
$(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,5)(4,6)(7,8)$$-4$
$2$$2$$(1,2)(7,8)$$0$
$2$$2$$(1,8)(2,7)(3,6)(4,5)$$0$
$2$$2$$(1,8)(2,7)(3,4)(5,6)$$0$
$4$$2$$(1,2)(4,6)$$0$
$4$$2$$(1,8)(2,7)(3,5)(4,6)$$2$
$4$$2$$(1,8)(2,7)$$-2$
$4$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$4$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$4$$4$$(1,4,2,6)(3,8,5,7)$$0$
$4$$4$$(1,7,2,8)(3,4,5,6)$$0$
$4$$4$$(1,4,2,6)(3,7,5,8)$$0$
$8$$4$$(1,7,2,8)(3,5)$$0$
$8$$4$$(1,5,8,4)(2,3,7,6)$$0$
$8$$4$$(1,5,8,6)(2,3,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.