Properties

Label 4.3889.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $3889$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(3889\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.3889.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.3889.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.3889.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} + x^{3} + x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 15 a + 22 + \left(17 a + 28\right)\cdot 31 + \left(24 a + 7\right)\cdot 31^{2} + \left(29 a + 12\right)\cdot 31^{3} + \left(27 a + 5\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 27 a + 19 + \left(20 a + 12\right)\cdot 31 + \left(2 a + 25\right)\cdot 31^{2} + \left(20 a + 19\right)\cdot 31^{3} + \left(9 a + 25\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 a + 21 + \left(13 a + 17\right)\cdot 31 + \left(6 a + 8\right)\cdot 31^{2} + \left(a + 16\right)\cdot 31^{3} + 3 a\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 11 + \left(10 a + 27\right)\cdot 31 + \left(28 a + 9\right)\cdot 31^{2} + \left(10 a + 26\right)\cdot 31^{3} + \left(21 a + 24\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 + 6\cdot 31 + 10\cdot 31^{2} + 18\cdot 31^{3} + 5\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$