Properties

Label 4.3857.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $3857$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(3857\)\(\medspace = 7 \cdot 19 \cdot 29 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.3857.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.3857.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.3857.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} + x^{3} - x^{2} + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: \( x^{2} + 60x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a + 57 + \left(37 a + 10\right)\cdot 61 + \left(9 a + 57\right)\cdot 61^{2} + 33\cdot 61^{3} + \left(4 a + 4\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 51 a + 6 + \left(23 a + 38\right)\cdot 61 + \left(51 a + 29\right)\cdot 61^{2} + \left(60 a + 24\right)\cdot 61^{3} + \left(56 a + 8\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 31 a + 11 + \left(53 a + 28\right)\cdot 61 + \left(30 a + 43\right)\cdot 61^{2} + \left(8 a + 37\right)\cdot 61^{3} + \left(21 a + 3\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 + 55\cdot 61 + 31\cdot 61^{2} + 10\cdot 61^{3} + 28\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 30 a + 42 + \left(7 a + 50\right)\cdot 61 + \left(30 a + 20\right)\cdot 61^{2} + \left(52 a + 15\right)\cdot 61^{3} + \left(39 a + 16\right)\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$