Properties

Label 4.37e3_41e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 37^{3} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$85147693= 37^{3} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - 4 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 46 + \left(25 a + 69\right)\cdot 73 + \left(71 a + 29\right)\cdot 73^{2} + \left(59 a + 26\right)\cdot 73^{3} + \left(46 a + 68\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 53 + \left(64 a + 47\right)\cdot 73 + \left(57 a + 54\right)\cdot 73^{2} + \left(64 a + 29\right)\cdot 73^{3} + \left(19 a + 5\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 51 + \left(47 a + 46\right)\cdot 73 + \left(a + 72\right)\cdot 73^{2} + \left(13 a + 61\right)\cdot 73^{3} + \left(26 a + 2\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 12 + \left(8 a + 60\right)\cdot 73 + \left(15 a + 17\right)\cdot 73^{2} + \left(8 a + 20\right)\cdot 73^{3} + 53 a\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 42\cdot 73 + 65\cdot 73^{2} + 45\cdot 73^{3} + 12\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 + 25\cdot 73 + 51\cdot 73^{2} + 34\cdot 73^{3} + 56\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$4$ $3$ $(2,4,6)$ $-2$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,2,3,4,5,6)$ $1$
$12$ $6$ $(1,3)(2,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.