Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 33\cdot 79 + 23\cdot 79^{2} + 61\cdot 79^{3} + 9\cdot 79^{4} + 27\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 a + 77 + \left(36 a + 1\right)\cdot 79 + \left(23 a + 17\right)\cdot 79^{2} + \left(64 a + 39\right)\cdot 79^{3} + \left(75 a + 75\right)\cdot 79^{4} + \left(25 a + 56\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 35 a + 17 + \left(18 a + 17\right)\cdot 79 + \left(6 a + 41\right)\cdot 79^{2} + \left(17 a + 51\right)\cdot 79^{3} + \left(42 a + 74\right)\cdot 79^{4} + \left(42 a + 59\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 51 a + 27 + \left(68 a + 32\right)\cdot 79 + \left(33 a + 59\right)\cdot 79^{2} + \left(54 a + 64\right)\cdot 79^{3} + \left(66 a + 51\right)\cdot 79^{4} + \left(75 a + 59\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 73 a + 4 + \left(42 a + 32\right)\cdot 79 + \left(55 a + 4\right)\cdot 79^{2} + \left(14 a + 1\right)\cdot 79^{3} + \left(3 a + 8\right)\cdot 79^{4} + \left(53 a + 7\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 44 a + 52 + 60 a\cdot 79 + \left(72 a + 29\right)\cdot 79^{2} + \left(61 a + 62\right)\cdot 79^{3} + \left(36 a + 20\right)\cdot 79^{4} + \left(36 a + 60\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 56 + 69\cdot 79 + 37\cdot 79^{2} + 29\cdot 79^{3} + 11\cdot 79^{4} + 55\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 28 a + 78 + \left(10 a + 49\right)\cdot 79 + \left(45 a + 24\right)\cdot 79^{2} + \left(24 a + 6\right)\cdot 79^{3} + \left(12 a + 64\right)\cdot 79^{4} + \left(3 a + 68\right)\cdot 79^{5} +O\left(79^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,7,8)(2,6,3,5)$ |
| $(1,7)(2,3)(4,8)(5,6)$ |
| $(2,4,6)(3,8,5)$ |
| $(1,2,7,3)(4,5,8,6)$ |
| $(2,3)(4,5)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,3)(4,8)(5,6)$ | $-4$ |
| $12$ | $2$ | $(2,3)(4,5)(6,8)$ | $0$ |
| $8$ | $3$ | $(1,6,8)(4,7,5)$ | $1$ |
| $6$ | $4$ | $(1,4,7,8)(2,6,3,5)$ | $0$ |
| $8$ | $6$ | $(1,7)(2,8,6,3,4,5)$ | $-1$ |
| $6$ | $8$ | $(1,5,3,4,7,6,2,8)$ | $0$ |
| $6$ | $8$ | $(1,6,3,8,7,5,2,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.