Properties

Label 4.37e2_53e3.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 37^{2} \cdot 53^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$203812613= 37^{2} \cdot 53^{3} $
Artin number field: Splitting field of $f= x^{6} + 2 x^{4} - 7 x^{3} + x^{2} - 7 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.53.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 14 + 26\cdot 47 + 26\cdot 47^{2} + 4\cdot 47^{3} + 41\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 8 + \left(18 a + 31\right)\cdot 47 + \left(39 a + 3\right)\cdot 47^{2} + \left(11 a + 29\right)\cdot 47^{3} + \left(31 a + 24\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 36\cdot 47 + 43\cdot 47^{2} + 30\cdot 47^{3} + 7\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 13 + \left(21 a + 43\right)\cdot 47 + \left(13 a + 45\right)\cdot 47^{2} + \left(17 a + 20\right)\cdot 47^{3} + \left(34 a + 17\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 25 + \left(28 a + 36\right)\cdot 47 + \left(7 a + 16\right)\cdot 47^{2} + \left(35 a + 13\right)\cdot 47^{3} + \left(15 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 16 + \left(25 a + 14\right)\cdot 47 + \left(33 a + 4\right)\cdot 47^{2} + \left(29 a + 42\right)\cdot 47^{3} + \left(12 a + 21\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(2,5)$$0$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(1,2,5)(3,4,6)$$1$
$4$$3$$(1,2,5)$$-2$
$18$$4$$(1,3)(2,6,5,4)$$0$
$12$$6$$(1,4,2,6,5,3)$$1$
$12$$6$$(2,5)(3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.