Properties

Label 4.37e2_233e3.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 37^{2} \cdot 233^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$17316942353= 37^{2} \cdot 233^{3} $
Artin number field: Splitting field of $f= x^{6} - 14 x^{4} - x^{3} + 49 x^{2} + 7 x - 58 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.233.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 a + 99 + \left(84 a + 30\right)\cdot 107 + \left(67 a + 79\right)\cdot 107^{2} + \left(23 a + 76\right)\cdot 107^{3} + \left(13 a + 62\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 77 + \left(53 a + 44\right)\cdot 107 + \left(14 a + 26\right)\cdot 107^{2} + \left(69 a + 72\right)\cdot 107^{3} + \left(60 a + 57\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 75 a + 13 + \left(22 a + 15\right)\cdot 107 + \left(39 a + 52\right)\cdot 107^{2} + \left(83 a + 103\right)\cdot 107^{3} + \left(93 a + 91\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 41\cdot 107 + 49\cdot 107^{2} + 21\cdot 107^{3} + 32\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 84 a + 62 + \left(53 a + 20\right)\cdot 107 + \left(92 a + 31\right)\cdot 107^{2} + \left(37 a + 13\right)\cdot 107^{3} + \left(46 a + 17\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 102 + 60\cdot 107 + 82\cdot 107^{2} + 33\cdot 107^{3} + 59\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$-2$
$6$$2$$(2,4)$$0$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,6)(2,4,5)$$1$
$4$$3$$(1,3,6)$$-2$
$18$$4$$(1,2,3,4)(5,6)$$0$
$12$$6$$(1,4,3,5,6,2)$$1$
$12$$6$$(1,3,6)(2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.