Properties

Label 4.37e2_233.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 37^{2} \cdot 233 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$318977= 37^{2} \cdot 233 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} - 4 x^{3} + 6 x^{2} + 5 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.233.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 67 + \left(86 a + 89\right)\cdot 107 + \left(28 a + 22\right)\cdot 107^{2} + \left(64 a + 81\right)\cdot 107^{3} + \left(28 a + 80\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 63 a + 29 + \left(20 a + 70\right)\cdot 107 + \left(78 a + 51\right)\cdot 107^{2} + \left(42 a + 95\right)\cdot 107^{3} + \left(78 a + 23\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 a + 73 + \left(67 a + 58\right)\cdot 107 + \left(70 a + 57\right)\cdot 107^{2} + \left(25 a + 37\right)\cdot 107^{3} + \left(100 a + 64\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 a + 4 + \left(39 a + 52\right)\cdot 107 + \left(36 a + 58\right)\cdot 107^{2} + \left(81 a + 69\right)\cdot 107^{3} + \left(6 a + 11\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 78 + 78\cdot 107 + 67\cdot 107^{2} + 42\cdot 107^{3} + 56\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 71 + 78\cdot 107 + 62\cdot 107^{2} + 101\cdot 107^{3} + 83\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,6)$$2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)$$1$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,4,2,5,6,3)$$0$
$12$$6$$(2,6)(3,4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.