Properties

Label 4.37_53e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 37 \cdot 53^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$103933= 37 \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} - x^{3} - 4 x^{2} + 12 x - 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 6\cdot 47 + 31\cdot 47^{2} + 3\cdot 47^{3} + 14\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 11 + \left(a + 21\right)\cdot 47 + \left(38 a + 24\right)\cdot 47^{2} + \left(32 a + 44\right)\cdot 47^{3} + \left(45 a + 21\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 24 + \left(45 a + 41\right)\cdot 47 + \left(8 a + 4\right)\cdot 47^{2} + \left(14 a + 25\right)\cdot 47^{3} + \left(a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 1 + 41\cdot 47 + \left(39 a + 35\right)\cdot 47^{2} + \left(10 a + 23\right)\cdot 47^{3} + \left(43 a + 44\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 26\cdot 47 + 25\cdot 47^{2} + 37\cdot 47^{3} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 30 + \left(46 a + 4\right)\cdot 47 + \left(7 a + 19\right)\cdot 47^{2} + \left(36 a + 6\right)\cdot 47^{3} + \left(3 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(2,3)(5,6)$ $0$
$4$ $3$ $(1,2,3)$ $-2$
$4$ $3$ $(1,2,3)(4,5,6)$ $1$
$18$ $4$ $(1,4)(2,6,3,5)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $-1$
$12$ $6$ $(2,3)(4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.