Properties

Label 4.37_499.5t5.1
Dimension 4
Group $S_5$
Conductor $ 37 \cdot 499 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$18463= 37 \cdot 499 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 3 x^{3} + 4 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 32\cdot 61 + 58\cdot 61^{2} + 21\cdot 61^{3} + 27\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 2\cdot 61 + 22\cdot 61^{2} + 4\cdot 61^{3} + 46\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 29\cdot 61 + 55\cdot 61^{2} + 32\cdot 61^{3} + 17\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 + 8\cdot 61 + 32\cdot 61^{2} + 12\cdot 61^{3} + 6\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 + 48\cdot 61 + 14\cdot 61^{2} + 50\cdot 61^{3} + 24\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.